INVESTIGATIONS ON CLINICAL VALIDATION OF MUTATED ZNF208 AS A NOVEL BIOMARKER OF BLAST CRISIS IN CHRONIC MYELOID LEUKEMIA

Main Article Content

Nawaf Alanazi
, Ameer Mahmood
Abdulkareem Al-Garni
Arbila Umrani
Abdulaziz Haji Siyal
Salman Basit
Sameera Shaheen
Masood Shammas
Sarah AlMukhaylid
Aamer Aleem
Zafar Iqbal

Keywords

Chronic Myeloid Leukemia, Accelerated phase; Blast crisis, Disease Progression, Molecular Biomarker, Transcription Factors, Zing Finger Proteins Cancer

Abstract

BCR-ABL1, the hallmark of cancer, promotes genomic instability leading to further mutation acquisition in CML. This transforms the manageable Chronic Phase (CP-CML) into an accelerated phase (AP-CML) and fatal crisis phase (BC-CML). Highly specific biomarkers for early detection of BC-CML are lacking. Transcription factor (TF) mutations universally cause cancer progression, relapses, and metastasis. Recently, ZNF208 TF was reported mutated in BC-CML but its reproducibility and clinical validation were required. Current studies utilized next-generation sequencing to validate mutated ZNF208 (c.64G>A) as a novel CML progression biomarker as it was detected in 0 (0%), 90% (10/20), and 100% (12/12) CP-, AP-, and BC-CML patients (p=0.0001), suggesting its high disease specificity. We recommend prospective clinical trials to further validate this novel CML progression biomarker.


 


Keywords: Chronic Myeloid Leukemia; Accelerated phase; Blast crisis; Disease Progression; Molecular Biomarker; Transcription Factors; Zing Finger Proteins; Cancer.

Abstract 37 | pdf Downloads 9

References

1. hmed HG, Alshammari MS, Alharbi HH, et al. Epidemiology of hematological malignancies in Hail region, Northern Saudi Arabia. Medical Science. 2020;24(102):699-705
2. Jabbour E, Kantarjian H. The evolution of treatment strategies for chronic myeloid leukemia. Review of Clinical Medicine. 2021;18(4):337-349. doi:10.1007/s11845-021-02634-8
3. Chen Q, et al. Impact of BCR-ABL1 Transcript Type on Treatment Outcomes in Chronic Myeloid Leukemia: A Systematic Review and Meta-Analysis. Leukemia. 2020;34(2):385-393. doi:10.1038/s41375-019-0467-6
4. Zeng F, Peng Y, Qin Y, et al. Regulation of DNA Damage Response and Its Impact on Imatinib Resistance in Chronic Myeloid Leukemia. Oncotarget. 2020;11(22):2109-2122. doi:10.18632/oncotarget.27572.
5. Ruggeri A, Labopin M, Bacigalupo A, Afanasyev B, Cornelissen JJ, Elmaagacli A, Itälä-Remes M, Blaise D, Meijer E, Koc Y, Milpied N, Schouten HC, Kroeger N, Mohty M, Nagler A. Post-transplant cyclophosphamide for graft-versus-host disease prophylaxis in HLA matched sibling or matched unrelated donor transplant for patients with acute leukemia, on behalf of ALWP-EBMT. J Hematol Oncol. 2018 Mar 15;11(1):40. doi: 10.1186/s13045-018-0586-4. PMID: 29544522; PMCID: PMC5855999.
6. Chimge NO, Chen MH, Nguyen C, et al. Metabolic Adaptations of Quiescent Leukemic Stem Cells: The Role of Fatty Acid Oxidation and Mitochondrial Function. Blood. 2019;133(8):806-816. doi:10.1182/blood-2018-09-875947
7. Goldman JM, Apperley JF, Jones L, et al. Bone marrow transplantation for patients with chronic myeloid leukemia. N Engl J Med. 1986;314(4):202-207. doi:10.1056/NEJM198601233140403
8. Wang G, Wang F, Huang Q, Li Y, Liu Y, Wang Y. Understanding Transcription Factor Regulation by Integrating Gene Expression and DNase I Hypersensitive Sites. Biomed Res Int. 2015;2015:757530. doi:10.1155/2015/757530
9. Bushweller JH. Targeting transcription factors in cancer - from undruggable to reality. Nat Rev Cancer. 2019;19(11):611-624. doi:10.1038/s41568-019-0196-7
10. Mologni L, Piazza R, Khandelwal P, Pirola A, Gambacorti-Passerini C. Somatic mutations identified at diagnosis by exome sequencing can predict response to imatinib in chronic phase chronic myeloid leukemia (CML) patients. Am J Hematol. 2017;92
11. Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020;34(4):966-984. doi:10.1038/s41375-020-0776-2
12. Baccarani M, Deininger MW, Rosti G, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122(6):872-884. doi:10.1182/blood-2013-05-501569
13. Baccarani M, Deininger MW, Rosti G, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122(6):872-884. doi:10.1182/blood-2013-05-501569
14. Cagnetta A, Garuti A, Marani C, et al. Evaluating treatment response of chronic myeloid leukemia: emerging science and technology. Curr Cancer Drug Targets. 2013;13(7):779-790. doi:10.2174/15680096113139990084
15. Cross NC, White HE, Müller MC, Saglio G, Hochhaus A. Standardized definitions of molecular response in chronic myeloid leukemia. Leukemia. 2012;26(10):2172-2175. doi:10.1038/leu.2012.104
16. Mahon FX, Etienne G. Deep molecular response in chronic myeloid leukemia: the new goal of therapy?. Clin Cancer Res. 2014;20(2):310-322. doi:10.1158/1078-0432.CCR-13-1988
17. Driscoll JJ, Rixe O. Overall survival: still the gold standard: why overall survival remains the definitive end point in cancer clinical trials. Cancer J. 2009;15(5):401-405. doi:10.1097/PPO.0b013e3181bdc2e0
18. Goel MK, Khanna P, Kishore J. Understanding survival analysis: Kaplan-Meier estimate. Int J Ayurveda Res. 2010;1(4):274-278. doi:10.4103/0974-7788.76794
19. Abdulla MAJ, Chandra P, Akiki SE, Aldapt MB, Sardar S, Chapra A, Nashwan AJ, Sorio C, Tomasello L, Boni C, Yassin MA. Clinicopathological Variables and Outcome in Chronic Myeloid Leukemia Associated With BCR-ABL1 Transcript Type and Body Weight: An Outcome of European LeukemiaNet Project. Cancer Control. 2021 Jan-Dec;28:10732748211038429. doi: 10.1177/10732748211038429. PMID: 34789006; PMCID: PMC8619745.
20. Goodyear MD, Krleza-Jeric K, Lemmens T. The Declaration of Helsinki. BMJ. 2007;335(7621):624-625. doi:10.1136/bmj.39339.610000.BE
21. Ip SC, Lin SW, Lai KM. An evaluation of the performance of five extraction methods: Chelex® 100, QIAamp® DNA Blood Mini Kit, QIAamp® DNA Investigator Kit, QIAsymphony® DNA Investigator® Kit and DNA IQ™. Sci Justice. 2015;55(3):200-208. doi:10.1016/j.scijus.2015.01.005
22. AlAsiri S, Basit S, Wood-Trageser MA, et al. Exome sequencing reveals MCM8 mutation underlies ovarian failure and chromosomal instability. J Clin Invest. 2015;125(1):258-262. doi:10.1172/JCI78473
23. Gnirke A, Melnikov A, Maguire J, et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol. 2009;27(2):182-189. doi:10.1038/nbt.1523
24. Retterer K, Juusola J, Cho MT, et al. Clinical application of whole-exome sequencing across clinical indications. Genet Med. 2016;18(7):696-704. doi:10.1038/gim.2015.148
25. Carson AR, Smith EN, Matsui H, et al. Effective filtering strategies to improve data quality from population-based whole exome sequencing studies. BMC Bioinformatics. 2014;15:125. Published 2014 May 2. doi:10.1186/1471-2105-15-125
26. Branford S, Wang P, Yeung DT, et al. Integrative genomic analysis reveals cancer-associated mutations at diagnosis of CML in patients with high-risk disease. Blood. 2018;132(9):948-961. doi:10.1182/blood-2018-02-832253
27. Xu J, Wu M, Sun Y, Zhao H, Wang Y, Gao J. Identifying Dysregulated lncRNA-Associated ceRNA Network Biomarkers in CML Based on Dynamical Network Biomarkers. Biomed Res Int. 2020;2020:5189549. Published 2020 Feb 18. doi:10.1155/2020/5189549
28. Tsiatis AC, Norris-Kirby A, Rich RG, et al. Comparison of Sanger sequencing, pyrosequencing, and melting curve analysis for the detection of KRAS mutations: diagnostic and clinical implications. J Mol Diagn. 2010;12(4):425-432. doi:10.2353/jmoldx.2010.090188
29. Beck TF, Mullikin JC; NISC Comparative Sequencing Program, Biesecker LG. Systematic Evaluation of Sanger Validation of Next-Generation Sequencing Variants. Clin Chem. 2016;62(4):647-654. doi:10.1373/clinchem.2015.249623
30. Diaz-Horta O, Duman D, Foster J 2nd, et al. Whole-exome sequencing efficiently detects rare mutations in autosomal recessive nonsyndromic hearing loss. PLoS One. 2012;7(11):e50628. doi:10.1371/journal.pone.0050628
31. NCBI Variation Viewer. (https://www.ncbi.nlm.nih.gov/variation/view/?assm=GCF_000001405.25) ; accessed on 3rd Jun 2020.
32. UCSC Genome Browser on Human (GRCh37/hg19). 32. https://genome.ucsc.edu. Accessed on 3rd Jun 2020.
33. R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/.

34. Sokal JE, Cox EB, Baccarani M, et al. Prognostic discrimination in "good-risk" chronic granulocytic leukemia. Blood. 1984;63(4):789-799.
35. Kuntegowdanahalli LC, Kanakasetty GB, Thanky AH, et al. Prognostic and predictive implications of Sokal, Euro and EUTOS scores in chronic myeloid leukaemia in the imatinib era-experience from a tertiary oncology centre in Southern India. Ecancermedicalscience. 2016;10:679. Published 2016 Oct 6. doi:10.3332/ecancer.2016.679
36. Amaravadi RK, et al. Best practices for the development and fit-for-purpose validation of biomarker methods. AAPS Open. 2019;5(1):1-15. doi:10.1186/s41120-019-0024-2
37. Oh et al. 2020. Development of an aptamer-based procalcitonin (PCT) detection platform for sepsis diagnosis. Molecular & Cellular Toxicology, 2020
38. Has-miR-146a polymorphism (rs2910164) and cancer risk: a meta-analysis. Springer, 2019
39. Wyllie AL, et al. Saliva or nasopharyngeal swab specimens for detection of SARS-CoV-2. N Engl J Med. 2020;383(13):1283-1286.
40. Morris TJ, Butcher LM, Feber A, et al. ChAMP: 450k Chip Analysis Methylation Pipeline. Bioinformatics. 2014;30(3):428-430. doi:10.1093/bioinformatics/btt684.
41. Musunuru et al. Genetic Testing for Inherited Cardiovascular Diseases: Scientific Statement from the American Heart Association. Circ Genom Precis Med. 2020;13
42. Ahmed Z, et al. Multi-omics strategies for personalized and predictive medicine: past, current, and future translational opportunities. Emerging Topics in Life Sciences. 2021
43. Barh D, et al. Omics Approaches in Breast Cancer: Towards Next-Generation Diagnosis, Prognosis, and Therapy. Springer, 2014
44. Abbasi EY, Deng Z, Ali Q, et al. Integration of Machine Learning and Multi-Omics Data for Enhanced Prediction of Leukemia. Bioinformatics. 2020;36(15):4328-4336. doi:10.1093/bioinformatics/btaa213
45. Wells JN, Chang NC, McCormick J, et al. Transposable elements and their role in the evolution of zinc finger genes. Genome Res. 2018;28(1):57-66. doi:10.1101/gr.226256.117.
46. Miao YR, Liu W, Zhong Z, You Y, Tang Y, Li W, Zhu X, Guo AY. Case Report: Multi-Omics Analysis and CAR-T Treatment of a Chronic Myeloid Leukemia Blast Crisis Case 5 Years After the Discontinuation of TKI. Front Oncol. 2021 Sep 21;11:739871. doi: 10.3389/fonc.2021.739871. PMID: 34621680; PMCID: PMC8490701.
47. Debmalya Barh et al. Omics Approaches in Breast Cancer: Towards Next-Generation Diagnosis, Prognosis, and Therapy. Springer, 2014
48. Hehlmann R, Lauseker M, Saußele S, et al. Assessment of imatinib as first-line treatment of chronic myeloid leukemia: 10-year survival results of the randomized CML study IV and impact of non-CML determinants. Leukemia. 2017;31(11):2398-2406. doi:10.1038/leu.2017.253
49. O'Brien SG, Guilhot F, Larson RA, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003;348(11):994-1004. doi:10.1056/NEJMoa022457.
50. Ahmad R, Tripathi AK, Tripathi P, Singh S, Singh R, Singh RK. Malondialdehyde and protein carbonyl as biomarkers for oxidative stress and disease progression in patients with chronic myeloid leukemia. In Vivo. 2008;22(4):525-528.
51. O'Sullivan J, Kothari C, Caron MC, et al. The role of ZNF432 in DNA damage response and repair mechanisms. Nucleic Acids Res. 2017;45(18):10540-10554. doi:10.1093/nar/gkx800
52. Becker KG, Nagle JW, Canning RD, Biddison WE, Ozato K, Drew PD. Rapid isolation and characterization of 118 novel C2H2-type zinc finger cDNAs expressed in human brain. Hum Mol Genet. 1995;4(4):685-691. doi:10.1093/hmg/4.4.685
53. Jen J, Wang YC. Zinc finger proteins in cancer progression. J Biomed Sci. 2016;23(1):53. Published 2016 Jul 13. doi:10.1186/s12929-016-0269-9.
54. Yang L, Zhang L, Wu Q, Boyd DD. Unbiased screening for transcriptional targets of ZKSCAN3 identifies integrin beta 4 and vascular endothelial growth factor as downstream targets. J Biol Chem. 2008;283(50):35295-35304. doi:10.1074/jbc.M806965200
55. O'Sullivan J, Kothari C, Caron MC, et al. Role of ZNF432 in Regulating DNA Repair Pathways and Its Impact on Sensitivity to PARP Inhibitors. DNA Repair. 2020;92:102897. doi:10.1016/j.dnarep.2020.102897
56. Codd V, Nelson CP, Albrecht E, et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet. 2013;45(4):422-427e4272. doi:10.1038/ng.2528
57. Munro D, Ghersi D, Singh M. Two critical positions in zinc finger domains are heavily mutated in three human cancer types. PLoS Comput Biol. 2018;14(6):e1006290. Published 2018 Jun 28. doi:10.1371/journal.pcbi.1006290
58. Walsh KM, Whitehead TP, de Smith AJ, et al. Common genetic variants associated with telomere length confer risk for neuroblastoma and other childhood cancers. Carcinogenesis. 2016;37(6):576-582. doi:10.1093/carcin/bgw037
59. Wang H, Yu J, Guo Y, et al. Genetic variants in the ZNF208 gene are associated with esophageal cancer in a Chinese Han population. Oncotarget. 2016;7(52):86829-86835. doi:10.18632/oncotarget.13468
60. Sun W, Hang D, Han S, et al. circRNA expression profiles and their potential roles in cervical cancer. Gene. 2019;716:144-151. doi:10.1016/j.gene.2019.02.034
61. Ding Y, Zhou X, Wu C, et al. Telomere length, ZNF208 genetic variants and risk of chronic obstructive pulmonary disease in the Hainan Li population. J Gene Med. 2018;20(12):e3061. doi:10.1002/jgm.3061
62. Sun W, Hang D, Han S, et al. Role of circRNAs in the Regulation of Cervical Cancer Progression and Their Potential as Diagnostic Biomarkers. Oncotarget. 2020;11(11):954-964. doi:10.18632/oncotarget.27358
63. Liu Z, Kruhlak MJ, Thiele CJ. CASZ1 transcription factor and its role in DNA damage response. Biochem Biophys Res Commun. 2018;503(2):1071-1078. doi:10.1016/j.bbrc.2018.08.021
64. Kang H, Park S, Jo A, et al. Phase separation of PARIS and its implications in cellular stress responses. EMBO Rep. 2019;20(7). doi:10.15252/embr.201847744

65. Rosspopoff O, Trono D. KRAB zinc-finger proteins and their roles in gene regulation. Trends Genet. 2017;33(6):420-431. doi:10.1016/j.tig.2017.03.007
66. Rosspopoff O, Trono D. The KRAB Domain and Its Role in Gene Regulation: Insights from Recent Studies. Trends Genet. 2020;36(8):637-647. doi:10.1016/j.tig.2020.05.006
67. Chang YJ, Lin S, Kang ZF, et al. TRIM28 regulation of gene expression through acetylation and its implications in cancer. Int J Mol Sci. 2018;19(12):3896. doi:10.3390/ijms19123896
68. Bolouri H, Farrar JE, Triche T Jr, Ries RE, Lim EL, Alonzo TA, Ma Y, Moore R, Mungall AJ, Marra MA, Zhang J, Ma X, Liu Y, Liu Y, Auvil JMG, Davidsen TM, Gesuwan P, Hermida LC, Salhia B, Capone S, Ramsingh G, Zwaan CM, Noort S, Piccolo SR, Kolb EA, Gamis AS, Smith MA, Gerhard DS, Meshinchi S. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat Med. 2018 Jan;24(1):103-112. doi: 10.1038/nm.4439. Epub 2017 Dec 11. Erratum in: Nat Med. 2018 Apr 10;24(4):526. Erratum in: Nat Med. 2019 Mar;25(3):530. PMID: 29227476; PMCID: PMC5907936.
69. Yan L, Tan S, Wang H, Yuan H, Liu X, Chen Y, de Thé H, Zhu J, Zhou J. Regulation of gene expression during neutrophil development by the Brd4-Smrt complex. Leukemia. 2019;33(9):2173-2183. doi:10.1038/s41375-019-0467-6
70. Shi ZY, Wang X, Chen WM, Li LD, Hao Y, Li JY, Sun K, Zhao XS, Jiang H, Jiang Q, Huang XJ, Qin YZ. Role of ZNF384 in the prognosis and treatment of B-cell acute lymphoblastic leukemia. Hematol Oncol. 2019;37(3):234-241. doi:10.1002/hon.2477
71. Robbins DJ, Pavletich TS, Patil AT, Pahopos D, Lasarev M, Polaki US, Gahvari ZJ, Bresnick EH, Matson DR. GATA2 mutations in myelodysplastic syndromes and their impact on disease progression. Blood. 2018;131(7):792-802. doi:10.1182/blood-2017-08-796424
72. Yang X, Yang L, Luo A, Liu S, Zhang X, Liu X, Liu X, Luo A, Cai M, Yan Y, Wu X,
73. Huang K, Xu L, Jiang H. Genetic variations in IKZF3 and susceptibility to acute lymphoblastic leukemia in children. Cancer. 2019;125(2):298-306. doi:10.1002/cncr.31934.
74. Pavlovic ZJ, Hsin-Yu Pai A, Hsiao TT, Yen CF, Alhasan H, Ozmen A, New EP, Guo X, Imudia AN, Guzeloglu-Kayisli O, Lockwood CJ, Kayisli UA. Role of GATA2 and GATA6 in endometrial dysfunction and reproductive health. Fertil Steril. 2019;112(4):785-792. doi:10.1016/j.fertnstert.2019.06.019

Most read articles by the same author(s)

1 2 > >>