ISOLATION AND EVALUATION OF MICROALGAL SPECIES FROM LOCAL HABITATS OF KHYBER PAKHTUNKHWA FOR BIOFUEL PRODUCTION

Main Article Content

Ibrar Ullah
Saleem Ullah
Zafar Iqbal

Keywords

Algae, Isolation, GCMS, Biofuel, KPK

Abstract

Microalgae plays a key role in the pursuit of sustainable energy as a promising source of biofuel, offering potential solutions to environmental challenges and contributing to the transition towards cleaner and renewable energy. This study was carried out to explore the biofuel potential of microalgal species isolated from different ecological regions of Khyber Pakhtunkhwa. Twenty-two different microalgal species were isolated from the Peshawar, Charsadda, Nowshehra, Dir, Buner and Swat regions. Among the isolated species Chlorella vulgaris, Oedogonium capillare, Scenedesmus dimorphus, Desmodesmus communis and Nanochloropsis oculata were selected due to their high prevalence in these regions. The isolated species were grown on different growth media i.e. Bold Basal Media (BBM), Blue Green-11 (BG-11), Bristol and Guillard’s F/2 having varied concentrations (10, 20, 30, 40 and 50%) and chemically analyzed for various biochemical traits through advance biochemical techniques. Media optimization for algal biomass showed that microalgal species grown on BBM had maximum biomass (51.77g), while minimum biomass (44.76g) was attained on BG media. Among the selected microalgal species, Chlorella vulgaris produced the maximum biomass (50.95g) however least biomass (44.81g) was produced by Scenedesmus dimorphus. In the case of media concentrations, maximum biomass (60.30g) was attained on 50% media, while lower biomass (32.98g) was attained on 10% media. The Physico-chemical properties of the selected species depicted that Nanochloropsis oculata from Buner area had a higher moisture content (30.3%) while Oedogonium capillare from the same area was high in ash content (27.5%), Chlorella vulgaris from Charsadda have high crude protein content (31%) while Nanochloropsis oculata from Swat had higher crude fiber (27.04%), Scenedesmus dimorphus from Dir have higher crude fat (17.8%) and the same species from Nowshehra revealed maximum NFE content (71.3%). The GC-MS analysis of selected microalgal species shows that these species contained appreciable amount of saturated and unsaturated fatty acids including Hexadecanoic acid (6.52%), Heptadecanoic acid (0.11%), Octadecanoic acid (41.87%), Docosanoic acid (0.72%), Tetracosanoic acid (1.01%) and 9, 12-Octadecadienoic acid (0.01%). Among the species, the highest biofuels were produced from the crude fat of Oedogonium capillare and Scenedesmus dimorphus therefore these species are recommended for commercial biofuel production.

Abstract 65 | Pdf Downloads 37

References

1. Adams, J. M. M., A. B. Ross, K. Anastasakis, E. M. Hodgson, J. A. Gallagher, J. M. Jones and I. S. Donnison. 2011. Seasonal variation in the chemical composition of the bioenergy feedstock Laminaria digitata for thermochemical conversion. Bio resource. Technol. 102(1), pp. 226-234.
2. Alam, M. M., A. S. Mumtaz, M. Russell, M. Grogger, D. Veverka and P. C. Hallenbeck. 2019. Isolation and Characterization of microalgae from diverse Pakistani habitats: Exploring Third-Generation biofuel potential. Energies. 12: 2660.
3. Alcantara, R., J. Amores, L. T. Canoira, E. Fidalgo, M. J. Franco and A. Navarro. 2000. Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow. Biomass. Bioenergy. 18(6): 515-527.
4. Aneja, K. R. 2005. Experiments in Microbiology, Plant Pathology and Biotechnology. New Age Publishers, New Delhi.
5. Chew, K. W., S. R. Chia, P. L. Show, T. C. Ling, S. S. Arya and J. S. Chang. 2018. Food waste compost as an organic nutrient source for the cultivation of Chlorella vulgaris. Bio. Resource. Technol. 267: 356-362.
6. Collet, P., A. Helias, L. Lardon, M. Ras, R. A. Goy and J. P. Steyer. 2011. Life cycle assessment of microalgae culture coupled to biogas production. Biol. Resource. Technol. 102(1): 207-214.
7. Daneshvar, E., C. Santhosh, E. Antikainen and A. Bhatnagar. 2018. Microalgal growth and nitrate removal efficiency in different cultivation conditions: effect of macro and micronutrients and salinity. J. Environ. Chem. Eng. 6(2): 1848-1854.
8. Deschamps, P and D. Moreira. 2009. Signal conflicts in the phylogeny of the primary photosynthetic eukaryotes. Mol. Biol. Evolution. 26(12): 2745-53.
9. Dong, T., J. Wang., C. Miao., Y. Zheng and S. Chen. 2013. Bio resource technology two step in situ biodiesel production from microalgae with high free fatty acid content. Biol. Res. Technol. 136: 8-15.
10. Fuentes, M. R., G. A. Fernandez, J. S. Perez and J. G. Guerrero. 2000. Biomass nutrient profiles of the microalgae Porphyridium cruentum. Food. Chem. 70(3), pp. 345-353.
11. Han, X., R. Jin, X. Li and S. Wang. 2014. Soil moisture estimation using cosmic-ray soil moisture sensing at heterogeneous farmland. IEEE Geoscience. Remote. Sens. Letters. 11(9), pp.1659-1663.
12. Hu, Q., M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert and A. Darzins. 2008. Microalgal triacylglycerol as feedstocks for biofuel production. Plant. J. 54:621-639.
13. Huang, G., F. Chen, D. Wei, X. W. Zhang and G. Xu. 2010. Biodiesel production by microalgal biotechnology. App. Energy. 87:38-46.
14. Jiang, Y., T. Yoshida and A. Quigg. 2012. Photosynthetic performance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae. Plant. Physiol. Biochem. 54, pp. 70-77.
15. Khuram, I., Ahmad, N., Jan, S., & Barinova, S. (2014). Freshwater green algal biofouling of boats in the Kabul River, Pakistan. Oceanological. Hydrobiol. Stud. 43(4): 329-336.
16. Kris-Etherton, P. M., W. S. Harris and L. J. Appel. 2002. Fish consumption, fish oil, omega-3 fatty acids and cardiovascular disease. Circulation. 106(21), pp .2747-2757.
17. Krohn, B. J., C. V. Mcneff, B. Yan and D. Nowlan. 2011. Production of algae-based biodiesel using the continuous catalytic Mcgyan® process. Bio resource. Technol. 102(1), pp .94-100.
18. Lang, X., D. G. Macdonald and G. A. Hill. 2001. Recycle bioreactor for bioethanol production from wheat starch II. Fermentation and economics. Energy. Source. 23(5): 427-436.
19. Lin, L., Z. Cunshan, S. Vittayapadung, S. Xiangqian and D. Mingdong. 2011. Opportunities and challenges for biodiesel fuel. Applied. Energy. 88(4): 1020-1031.
20. Liu, F., Q. Tan, D. Weiss, A. Cremazy, C. Fortin and P. Campbell. 2020. Unravelling metal speciation in the microenvironment surrounding phytoplankton cells to improve predictions of metal bioavailability. Environ. Sci. Technol. 54(13): 8177-8185.
21. Mata, T. M., A. A. Martins and N. S. Caetano. 2010. Microalgae for biodiesel production and other applications: a review. Renewable. Sustain. Energy. Reviews. 14(1), pp .217-232.
22. Menezes, R. S., A. T. Soares, J. G. Marques, R. G. Lopes, R. F. Arantes, R. B. Derner and N. R. A. Filho. 2016. Culture medium influence on growth, fatty acid, and pigment composition of Choricystis minor var. minor: A suitable microalgae for biodiesel production. J. Appl. Phycol. 28(5): 2679-2686.
23. Metzger, P and C. Largeau. 2005. Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. App. Microbiol. Biotechnol. 66: 486-496.
24. Miao, A., W. Wang and P. Juneau. 2005. Comparison of cd, cu and zn toxic effects on four marine phytoplankton by pulse‐amplitude‐modulated fluorimeter. Environ. Toxicol. Chem. 24(10): 2603-2611.
25. Milledge, J., B. Nielsen, S. Maneein and P. Harvey. 2019. A brief review of anaerobic digestion of algae for bioenergy. Energies. 12(6): 1166.
26. Mishra, S., M. Roy and K. Mohanty. 2019. Microalgal bioenergy production under zero-waste bio-refinery approach: Recent advances and future perspectives. Biol. Res. Technol. 292: 122008.
27. MisurCoVa, L., S. KracMar, B. Klejdus and J. Vacek. 2010. Nitrogen content, dietary fiber and digestibility in algal food products. Czech. J. Food. Sci.
28. Pratoomyot, J., P. Srivilas and T. Noiraksar. 2015. Fatty acids composition of 10 microalgal species. J. Sci. Technol. 26(6): 1179-1187.
29. Rushan, N. H., N. H. M. Yasin and F. M. Said. 2021. The effect of culture medium on the oil yield and fatty acid methyl ester of freshwater microalgae Chlorella vulgaris. Chem. Eng. Com. 208(4): 592-600.
30. Shah, S., M. Shuaib, K. Khan, T. Khan and F. Hussain. 2018. Effect of water quality on algal diversity in various sites of district charsadda, Khyber Pakhtunkhwa (KPK), Pakistan. Pure. App. Biol. 7(4): 57-68.
31. Xu, H., X. Miao and Q. Wu. 2006. High quality biodiesel production from a microalgae Chlorella sp. by heterotrophic growth in fermenters. J. Biotech. 126:499-507.

Most read articles by the same author(s)