PROGNOSTIC IMPACT OF MOLECULAR PROFILES AND MOLECULAR SIGNATURES IN CLEAR CELL OVARIAN CANCER

Main Article Content

Naheed Akhtar
Amna Najam
Sadia Kanwal
Jaweria Faisal
Wania Afzal
Jaisingh Rajput

Keywords

Ovarian Clear Cell Carcinoma (OCCC), Mutational Signatures, ARID1A, PIK3CA, Tumor Mutational Burden (TMB)

Abstract

Introduction: Ovarian Clear Cell Carcinoma (OCCC) presents a complex molecular landscape necessitating a thorough investigation. Our study aimed to elucidate molecular profiles and mutational signatures in OCCC, utilizing innovative methods such as Next Generation Sequencing (NGS) and introducing novel subgrouping based on mutational signatures.


Methodology: A carefully selected cohort of 150 OCCC patients underwent meticulous data collection, including clinical demographics, pathological characteristics, and treatment history. NGS techniques identified mutations in key genes (e.g., ARID1A, PIK3CA) within relevant pathways. Mutational analysis encompassed detailed sequencing parameters, and distinct molecular subgroups were identified using cluster analysis techniques.


Resuts: ARID1A mutations were prevalent in 45% of cases, PIK3CA mutations in 35%, and a noteworthy co-occurrence in 25%. Additional mutations within crucial pathways provided a nuanced molecular profile. Molecular subgrouping revealed four distinct groups characterized by unique mutational signatures, shedding light on C-APOBEC enzyme activation and AGEING. Calculation of Tumor Mutational Burden (TMB) yielded a median of 8.5 mutations per megabase. TMB emerged as a promising prognostic tool, with elevated TMB associated with adverse clinical outcomes. Kaplan-Meier survival curves and Cox proportional hazards models further validated the prognostic significance of TMB in OCCC. Chi-square tests highlighted specific mutations correlating with clinical parameters, while subgroup analyses demonstrated varied prognostic implications based on mutational profiles.


Conclusion: Our research study advances our understanding of OCCC's molecular complexity, introducing TMB as a prognostic marker and unveiling distinct molecular subgroups. These findings underscore the importance of personalized treatment strategies and warrant further exploration for their clinical relevance and impact on patient outcomes.

Abstract 150 | pdf Downloads 49

References

1. Mackay HJ, Brady MF, Oza AM, Reuss A, Pujade-Lauraine E, Swart AM, et al. Prognostic Relevance of Uncommon Ovarian Histology in Women With Stage III/IV Epithelial Ovarian Cancer. International Journal of Gynecologic Cancer 2010;20:945–52.
https://doi.org/10.1111/IGC.0b013e3181dd0110.
2. Sugiyama T, Kamura T, Kigawa J, Terakawa N, Kikuchi Y, Kita T, et al. Clinical characteristics of clear cell carcinoma of the ovary. Cancer 2000;88:2584–9. https://doi.org/10.1002/1097-0142(20000601)88:11<2584::AID-CNCR22>3.0.CO;2-5.
3. Schnack TH, Høgdall E, Nedergaard L, Høgdall C. Demographic Clinical and Prognostic Factors of Primary Ovarian Adenocarcinomas of Serous and Clear Cell Histology—A Comparative Study. International Journal of Gynecologic Cancer 2016;26:82–90.
https://doi.org/10.1097/IGC.0000000000000585.
4. Itamochi H, Oishi T, Oumi N, Takeuchi S, Yoshihara K, Mikami M, et al. Whole-genome sequencing revealed novel prognostic biomarkers and promising targets for therapy of ovarian clear cell carcinoma. Br J Cancer 2017;117:717–24. https://doi.org/10.1038/bjc.2017.228.
5. Oliveira DVNP, Schnack TH, Poulsen TS, Christiansen AP, Høgdall CK, Høgdall E V. Genomic Sub-Classification of Ovarian Clear Cell Carcinoma Revealed by Distinct Mutational Signatures. Cancers (Basel) 2021;13:5242. https://doi.org/10.3390/cancers13205242.
6. Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, et al. ARID1A Mutations in Endometriosis-Associated Ovarian Carcinomas. New England Journal of Medicine 2010;363:1532–43. https://doi.org/10.1056/NEJMoa1008433.
7. Jones S, Wang T-L, Shih I-M, Mao T-L, Nakayama K, Roden R, et al. Frequent Mutations of Chromatin Remodeling Gene ARID1A in Ovarian Clear Cell Carcinoma. Science (1979) 2010;330:228–31. https://doi.org/10.1126/science.1196333.
8. Yamamoto S, Tsuda H, Miyai K, Takano M, Tamai S, Matsubara O. Accumulative copy number increase of MET drives tumor development and histological progression in a subset of ovarian clear-cell adenocarcinomas. Modern Pathology 2012;25:122–30.
https://doi.org/10.1038/modpathol.2011.143.
9. Reisman D, Glaros S, Thompson EA. The SWI/SNF complex and cancer. Oncogene 2009;28:1653–68. https://doi.org/10.1038/onc.2009.4.
10. Wang W, Xue Y, Zhou S, Kuo A, Cairns BR, Crabtree GR. Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev 1996;10:2117–30.
https://doi.org/10.1101/gad.10.17.2117.
11. Chandler RL, Damrauer JS, Raab JR, Schisler JC, Wilkerson MD, Didion JP, et al. Coexistent ARID1A–PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling. Nat Commun 2015;6:6118.
https://doi.org/10.1038/ncomms7118.
12. Guan B, Suryo Rahmanto Y, Wu R-C, Wang Y, Wang Z, Wang T-L, et al. Roles of Deletion of Arid1a, a Tumor Suppressor, in Mouse Ovarian Tumorigenesis. JNCI: Journal of the National Cancer Institute 2014;106. https://doi.org/10.1093/jnci/dju146.
13. Stokoe D, Stephens LR, Copeland T, Gaffney PRJ, Reese CB, Painter GF, et al. Dual Role of Phosphatidylinositol-3,4,5-trisphosphate in the Activation of Protein Kinase B. Science (1979) 1997;277:567–70. https://doi.org/10.1126/science.277.5325.567.
14. Goncalves MD, Hopkins BD, Cantley LC. Phosphatidylinositol 3-Kinase, Growth Disorders, and Cancer. New England Journal of Medicine 2018;379:2052–62.
https://doi.org/10.1056/NEJMra1704560.
15. Mollon LE, Anderson EJ, Dean JL, Warholak TL, Aizer A, Platt EA, et al. A Systematic Literature Review of the Prognostic and Predictive Value of PIK3CA Mutations in HR+/HER2− Metastatic Breast Cancer. Clin Breast Cancer 2019. https://doi.org/10.1016/j.clbc.2019.08.011.
16. Yamamoto S, Tsuda H, Takano M, Tamai S, Matsubara O. Loss of ARID1A protein expression occurs as an early event in ovarian clear-cell carcinoma development and frequently coexists with PIK3CA mutations. Modern Pathology 2012;25:615–24.
https://doi.org/10.1038/modpathol.2011.189.
17. Yamamoto S, Tsuda H, Takano M, Tamai S, Matsubara O. PIK3CA mutations and loss of ARID1A protein expression are early events in the development of cystic ovarian clear cell adenocarcinoma. Virchows Archiv 2012;460:77–87. https://doi.org/10.1007/s00428-011-1169-8.
18. Wang YK, Bashashati A, Anglesio MS, Cochrane DR, Grewal DS, Ha G, et al. Genomic consequences of aberrant DNA repair mechanisms stratify ovarian cancer histotypes. Nat Genet 2017;49:856–65. https://doi.org/10.1038/ng.3849.
19. Shibuya Y, Tokunaga H, Saito S, Shimokawa K, Katsuoka F, Bin L, et al. Identification of somatic genetic alterations in ovarian clear cell carcinoma with next generation sequencing. Genes Chromosomes Cancer 2018;57:51–60. https://doi.org/10.1002/gcc.22507.
20. Wu H-X, Wang Z-X, Zhao Q, Chen D-L, He M-M, Yang L-P, et al. Tumor mutational and indel burden: a systematic pan-cancer evaluation as prognostic biomarkers. Ann Transl Med 2019;7:640–640. https://doi.org/10.21037/atm.2019.10.116.
21. Friedlander ML, Russell K, Millis S, Gatalica Z, Bender R, Voss A. Molecular Profiling of Clear Cell Ovarian Cancers: Identifying Potential Treatment Targets for Clinical Trials. International Journal of Gynecologic Cancer 2016;26:648–54.
https://doi.org/10.1097/IGC.0000000000000677.
22. Oliveira DVNP, Schnack TH, Poulsen TS, Christiansen AP, Høgdall CK, Høgdall E V. Genomic Sub-Classification of Ovarian Clear Cell Carcinoma Revealed by Distinct Mutational Signatures. Cancers (Basel) 2021;13:5242. https://doi.org/10.3390/cancers13205242.
23. Chandler RL, Damrauer JS, Raab JR, Schisler JC, Wilkerson MD, Didion JP, et al. Coexistent ARID1A–PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling. Nat Commun 2015;6:6118.
https://doi.org/10.1038/ncomms7118.
24. Kuo K-T, Mao T-L, Jones S, Veras E, Ayhan A, Wang T-L, et al. Frequent Activating Mutations of PIK3CA in Ovarian Clear Cell Carcinoma. Am J Pathol 2009;174:1597–601.
https://doi.org/10.2353/ajpath.2009.081000.
25. Murakami K, Kanto A, Sakai K, Miyagawa C, Takaya H, Nakai H, et al. Frequent PIK3CA mutations in eutopic endometrium of patients with ovarian clear cell carcinoma. Modern Pathology 2021;34:2071–9. https://doi.org/10.1038/s41379-021-00861-3.
26. Schnack TH, Oliveira D-VNP, Christiansen AP, Høgdall C, Høgdall E. Prognostic impact of molecular profiles and molecular signatures in clear cell ovarian cancer. Cancer Genet 2023;278–279:9–16. https://doi.org/10.1016/j.cancergen.2023.08.001.
27. Farah AM, Gu S, Jia Y. Clinical analysis and literature review of a case of ovarian clear cell carcinoma with PIK3CA gene mutation: A case report. Medicine 2022;101:e30666. https://doi.org/10.1097/MD.0000000000030666.
28. Iida Y, Okamoto A, Hollis RL, Gourley C, Herrington CS. Clear cell carcinoma of the ovary: a clinical and molecular perspective. International Journal of Gynecologic Cancer 2021;31:605–16. https://doi.org/10.1136/ijgc-2020-001656.
29. Oliveira DVNP, Schnack TH, Poulsen TS, Christiansen AP, Høgdall CK, Høgdall E V. Genomic Sub-Classification of Ovarian Clear Cell Carcinoma Revealed by Distinct Mutational Signatures. Cancers (Basel) 2021;13:5242. https://doi.org/10.3390/cancers13205242.

Most read articles by the same author(s)