PLANTS FLAVONOIDS: CHEMISTRY, METABOLISM AND BIOLOGICAL ACTIVITIES
Main Article Content
Keywords
Flavonoids, classification, biological activities, secondary metabolites
Abstract
Flavonoids are plant derived secondary metabolites. They are found in many fruits, vegetables, and seeds. They give the characteristic color, odor and taste. They are bioactive polyphenolic compounds and play a variety of roles in plants, including regulation of cell growth, attract insects and pollinators, and defending the biotic and abiotic stresses. Cell growth, attract insects and pollinators, and defending the biotic and abiotic stresses. Flavonoids gain attention in recent years due to high mortality rate of cardiovascular disease and low preventing rate of chronic cardiovascular disease. These compounds have anticancer, anti-aging, anti-inflammatory, neuroprotective cardio protective, immunomodulatory, anti-microbial, antidiabetic, anthelmintic, and antiviral effects in humans. In the review we discuss the current research on flavonoid, chemistry of flavonoids, their metabolism in human body, and their biological activities.
References
2. Saini N., Gahlawat S.K., Lather V. Flavonoids: A nutraceutical and its role as anti-inflammatory and anticancer agent. In: Gahlawat S., Salar R., Siwach P., Duhan J., Kumar S., Kaur P., editors. Plant Biotechnology: Recent Advancements and Developments. Springer; Singapore: 2017.
3. D’Amelia V., Aversano R., Chiaiese P., Carputo D. The antioxidant properties of plant flavonoids: Their exploitation by molecular plant breeding. Phytochem. Rev. 2018;17:611–625. doi: 10.1007/s11101-018-9568-y10.
4. Takahashi A & Ohnishi T (2004) The significance of the study about the biological effects of solar ultraviolet radiation using the exposed facility on the international space station. Biol Sci Space 18, 255–260.
5. Panche, A.N., Diwan, A.D. and Chandra, S.R., 2016. Flavonoids: an overview. Journal of nutritional science, 5.
6. E. J. Middleton, “Effect of plant flavonoids on immune and inflammatory cell function,” Advances in Experimental Medicine and Biology, vol. 439, pp. 175–182, 1998.
7. K. R. Narayana, M. S. Reddy, M. R. Chaluvadi, and D. R. Krishna, “Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential,” Indian Journal of Pharmacology, vol. 33, no. 1, pp. 2–16, 2001.
8. E. Middleton, “The flavonoids,” Trends in Pharmacological Sciences, vol. 5, pp. 335–338, 1984.
9. Manach C, Scalbert A, Morand C, et al. (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79, 727–747.
10. Iwashina T (2013) Flavonoid properties of five families newly incorporated into the order Caryophyllales (Review). Bull Natl Mus Nat Sci 39, 25–51.
11. Matthies A, Clavel T, Gütschow M, et al. (2008) Conversion of daidzein and genistein by an anaerobic bacterium newly isolated from the mouse intestine. Appl Envrion Microbiol 74, 4847–4852.
12. Aoki T, Akashi T & Ayabe S (2000) Flavonoids of leguminous plants: structure, biological activity, and biosynthesis. J Plant Res 113, 475–488.
13. Dixon R & Ferreira D (2002) Molecules of interest: genistein. Phytochemistry 60, 205–211.
14. Szkudelska K & Nogowski L (2007) Genistein – a dietary compound inducing hormonal and metabolic changes. J Steroid Biochem Mol Biol 105, 37–45. [PubMed] [Google Scholar]
15. Linuma M, Tanaka T, Hamada K, et al. (1987) Revised structure of neoflavone in Coutarea hexandra. Phytochemistry 26, 3096–3097. [Google Scholar]
16. 23. Nishimura S, Taki M, Takaishi S, et al. (2000) Structures of 4-aryl-coumarin (neoflavone) dimers isolated from Pistacia chinensis BUNGE and their estrogen-like activity. Chem Pharm Bull (Tokyo) 48, 505–508. [PubMed] [Google Scholar]
17. Garazd M, Garazd Y & Khilya V (2003) Neoflavones. 1. Natural distribution and spectral and biological properties. Chem Nat Comp 39, 54–121.
18. Giusti M & Wrolstad R (2003) Acylated anthocyanins from edible sources and their applications in food systems. Biochem Eng J 14, 217–225.
19. Hertog MG, Hollman PC & Van De PB (1993) Content of potentially anticarcinogenic flavonoids of tea infusions, wines, and fruit juices. J Agric Food Chem 41, 1242–1246.
20. López-Lázaro M (2009) Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem 9, 31–59.
21. P. C. H. Hollman, M. N. C. P. Buijsman, Y. van Gameren, P. J. Cnossen, J. H. M. de Vries, and M. B. Katan, “The sugar moiety is a major determinant of the absorption of dietary flavonoid glycosides in man,” Free Radical Research, vol. 31, no. 6, pp. 569–573, 1999.View at: Google Scholar
22. A. J. Day, F. J. Canada, J. C. Diaz et al., “Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase,” FEBS Letters, vol. 468, no. 2-3, pp. 166–170, 2000.View at: Publisher Site | Google Scholar
23. T. Walle, “Serial review: flavonoids and isoflavones (phytoestrogens: absorption, metabolism, and bioactivity): absorption and metabolism of flavonoids,” Free Radical Biology and Medicine, vol. 36, no. 7, pp. 829–837, 2004.View at: Publisher Site | Google Scholar
24. R. R. Scheline, “Metabolism of foreign compounds by gastrointestinal microorganisms,” Pharmacological Reviews, vol. 25, no. 4, pp. 451–532, 1973.View at: Google Scholar
25. L. Bravo, “Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance,” Nutrition Reviews, vol. 56, no. 11, pp. 317–333, 1998.View at: Google Scholar
26. P. C. H. Hollman, “Absorption, bioavailability and metabolism of flavonoids,” Pharmaceutical Biology, vol. 42, pp. 74–83, 2004.View at: Publisher Site | Google Scholar
27. P. C. H. Hollman, J. M. P. van Trijp, M. N. C. P. Buysman et al., “Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man,” FEBS Letters, vol. 418, no. 1-2, pp. 152–156, 1997.View at: Publisher Site | Google Scholar
28. J. E. Spencer, F. Chaudry, A. S. Pannala, S. K. Srai, E. Debnam, and E. C. Rice, “Decomposition of cocoa procyanidins in the gastric milieu,” Biochemical and Biophysical Research Communications, vol. 272, no. 1, pp. 236–241, 2000.View at: Publisher Site | Google Scholar
29. I. F. F. Benzie, Y. T. Szeto, J. J. Strain, and B. Tomlinson, “Consumption of green tea causes rapid increase in plasma antioxidant power in humans,” Nutrition and Cancer, vol. 34, no. 1, pp. 83–87, 1999.View at: Google Scholar
30. Stobiecki M., Kachlicki P. Isolation and identification of flavonoids. In: Grotewold E., editor. The Science of Flavonoids. Springer; Cincinnati, OH, USA: 2006.
31. Tzanova M., Atanasov V., Yaneva Z., Ivanova D., Dinev T. Selectivity of current extraction techniques for flavonoids from plant materials. Processes.
32. Awouafack M.D., Tane P., Morita H. Isolation and structure characterization of flavonoids. In: Justino G.C., editor. Flavonoids—From Biosynthesis to Human Health. IntechOpen; London, UK: 2017.
33. Boukhalkhal S., Gourine N., Pinto D.C.G.A., Silva A.M.S., Yousfi M. UHPLC-DAD-ESI-MSn profiling variability of the phenolic constituents of Artemisia campestris L. populations growing in Algeria. Biocatal. Agric. Biotechnol. 2020;23:101483. doi: 10.1016/j.bcab.2019.101483.
34. Ye M., Yang W.-Z., Liu K.-D., Qiao X., Li B.-J., Cheng J., Feng J., Guo D.-A., Zhao Y.-Y. Characterization of flavonoids in Millettia nitida var. hirsutissima by HPLC/DAD/ESI-MSn. J. Pharmaceut. Anal. 2012;2:35–42. doi: 10.1016/j.jpha.2011.09.009.
35. Simões M.A.M., Pinto D.C.G.A., Neves B.M.R., Silva A.M.S. Flavonoid profile of the Genista tridentate L., a species used traditionally to treat inflammatory processes. Molecules. 2020;25:812. doi: 10.3390/molecules25040812.
36. Mabry T.J., Markham K.R., Thomas M.B. Reagents and procedures for the ultraviolet spectral analysis of flavonoids. In: Mabry T.J., Markham K.R., Thomas M.B., editors. The Systematic Identification of Flavonoids. Springer; Berlin/Heidelberg, Germany: 1970.
37. Lee JH, Regmi SC, Kim JA, Cho MH, Yun H, Lee CS, Lee J. 2011. Apple flavonoid phloretin inhibits Escherichia coli O157:H7 biofilm formation and ameliorates colon inflammation in rats. Infect Immun. 79:4819–4827.
38. Winter J, Moore LH, Dowell VR, Bokkenheuser VD. 1989. C-ring cleavage of flavonoids by human intestinal bacteria. Appl Environ Microbiol. 55:1203–1208.
39. Li Y, Luo Y, Hu Y, Zhu DD, Zhang S, Liu ZJ, Gong HB, Zhu HL. 2012. Design, synthesis and antimicrobial activities of nitroimidazole derivatives containing 1,3,4-oxadiazole scaffold as FabH inhibitors. Bioorganic Med Chem. 20:4316–4322.
40. Arif T, Mandal TK, Dabur R. 2011. Natural products: Anti-fungal agents derived from plants. J Asian Nat Prod Res. 11:621–638.
41. Salas MP, Céliz G, Geronazzo H, Daz M, Resnik SL. 2011. Antifungal activity of natural and enzymatically-modified flavonoids isolated from citrus species. Food Chem. 124:1411–1415.
42. Serpa R, França EJG, FurlanetoMaia L, Andrade CGTJ, Diniz A, Furlaneto MC. 2012. In vitro antifungal activity of the flavonoid baicalein against Candida species. J Med Microbiol. 61:1704–1708.
43. Gerdin B and Srensso E: Inhibitory effect of the flavonoid on increased microvascular permeability induced by various agents in rat skin. International Journal of Microcirculation, Clinical and Experimental 1983; 2(1): 39-46.
44. Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR and Abubakar S: Antiviral activity of four types of bioflavonoid against dengue virus type-2. Vir Jour 2011; 8: 560.
45. Hatti K, Diwakar L, Rao G, et al. (2009) Abyssinones and related flavonoids as potential steroidogenesis modulators. Bioinformation 3, 399–402.
46. Borges F, Fernandes E & Roleira F (2002) Progress towards the discovery of xanthine oxidase inhibitors. Curr Med Chem 9, 195–217.
47. 75. Hille R (1996) The mononuclear molybdenum enzymes. Chem Rev 96, 2757–2816.
48. Alnajjar B (2008) Computational studies of natural flavonoids towards the discovery of a potential xanthine oxidase inhibitor. MSc Thesis, Universiti Sains, Malaysia.
49. Umamaheswari M, Madeswaran A, Kuppusamy A, et al. (2011) Discovery of potential xanthine oxidase inhibitors using in silico docking studies. Der Pharma Chemica 3, 240–247.
50. Shoba G, Hari S, Prabhavathi G, et al. (2010) Flavonoids – natural therapeutic agents for polycystic kidney disease. Int J Pharm Bio Sci 1, B89–B105.
51. Lin W, Xie J, Wu X, et al. (2014) Inhibition of xanthine oxidase activity by gnaphalium affine extract. Chin Med Sci J 29, 225–230.
52. De Souza V, De Franco E, De Araujo M, et al. (2016) Characterization of the antioxidant activity of aglycone and glycosylated derivatives of hesperetin: an in-vitro and in-vitro study. J Mol Recognit 29, 80–87.
53. Perry EK, Tomlinson BE, Blessed G, et al. (1978) Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J 2, 1457–1459.
54. Khan MT, Orhan I & Enol SS (2009) Cholinesterase inhibitory activities of some flavonoid derivatives and chosen xanthone and their molecular docking studies. Chem Biol Interact 181, 383–389.
55. Sheng R, Lin X, Zhang J, et al. (2009) Design, synthesis and evaluation of flavonoid derivatives as potent AChE inhibitors. Bioorg Med Chem 17, 6692–6698.
56. Zhang J, Wu Y and Zhao X: Chemopreventive effect of flavonoids from Ougan (Citrus reticulata cv. Suavissima) fruit against cancer cell proliferation and migration. J Funct Foods 2014; 10: 511-519.
57. Kelly EH, Anthony RT and Dennis JB: Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. Nutri. Biochem 2002; 13(10): 572-584.
58. Kukic J, Petrovic C and Niketic: Antioxidant activity of four endemic Stachys taxa. Biol Pharmaceut Bull 2006; 29: 725-729.
59. Vasconcelos SML, Goulart MOF, Moura JBDF, Manfredini V, Benfato MDS, Kubota LT. 2007. Espécies reativas de oxigênio e de nitrogênio, antioxidantes e marcadores de dano oxidativo em sangue humano: Principais métodos analíticos para sua determinação. Quim Nova. 30:1323–1338.
60. Mamede FEAR , Pastore GM . 2004 Wine phenolic compounds: structure and antioxidant action . B Cepp. 22: 233 - 252 .
61. Portinho JA, Zimmermann LM, Bruck MR. 2012. Efeitos Benéficos do Açaí Beneficial effects of açaí. Int J Nutrology. 5:15–20.
62. Cerqueira F, Cordeiro-Da Silva A, Araújo N, Cidade H, Kijjoa A, Nascimento MSJ. 2003. Inhibition of lymphocyte proliferation by prenylated flavones: artelastin as a potent inhibitor. Life Sci. 73:2321–2334.
63. de Souza PO, Bianchi SE, Figueiró F, Heimfarth L, Moresco KS, Gonçalves RM, Hoppe JB, Klein CP, Salbego CG, Gelain DP, Bassani VL. Anticancer activity of flavonoids isolated from Achyrocline satureioides in gliomas cell lines. Toxicology in Vitro. 2018 Sep 1; 51:23-33.