PHYTOCHEMICAL AND PHYSICOCHEMICAL INVESTIGATION OF MIRACULOUS OIL FROM SEEDS OF ADENANTHERA PAVONINA L.

Main Article Content

Muhammad Muzammil Ramzan
Muhammad Abdul Haq Khan
Ijaz Ali
Shameen Hassan
Numera Arshad
Syed Ihtisham Haider
Asim Raza
Rana Noor-ul-amin
Mehboob Ur Rehman Kashif
Dilshad Sabir
Umar Farooq
Sher Afzal
Mudassar Mazher

Keywords

Seed, Oil, Phytochemical, Antioxidant, Fatty Acids, GCMS, Iodine Value

Abstract

Adenanthera pavonina a perennial species of family Leguminosae is commonly known as red-bead tree. It is a medicinal plant traditionally used to treat various health conditions. The plant is reported to have a wide range of biological activities including astringent, anti-hemorrhagic, anti-diarrheal, anti-hematuria, anti-inflammatory, anti-rheumatic, anti-gout and anti-oxidant activities. Seeds are anticephalgic and also used for the treatment of paralysis and blood pressure. The Gas Chromatography Mass Spectroscopic (GCMS) and Gas Chromatographic Flame Ionization Detector (GCFID) spectra of plant oil indicated the presence of valuable constituents. The compounds identified by GCMS include 2-amylfuran, Pentanoic acid, Hexanoic acid, Decane, 2,4,Decadienal, C10 H18 O, Palmitic Acid, Octadec-9-enoic acid, and  Stigmasta 3,5-diene-7-one.The unsaturated fatty acid content was found to be 44.628 % while unsaturated fatty acid were identified to be 2.53 % including other fatty acid as 52.502%. Main fatty acid identified were palmitic acid (60.999%), Linolenic acid (26.507%) Stearic acid (24.634%), Behenic acid (28.203%) and Decosahexonic acid (15.031%). The anti-oxidant activity and physicochemical analysis of oil including iodine value sap value was also performed to assess the bioactivity and stability characteristics of fixed oil. Iodine value was found to be 53.444 indicating low degree of saturation while Sap value was found out 283. The antioxidant potential of oil was found to be 77.187 %. Hence the current findings justified the traditional uses of this significant medicinal plant species.

Abstract 163 | pdf Downloads 26

References

1) Abdu, K., & Adamu, M. (2020). Screening for Bioactive Extracts and Targeted Isolation of Antimicrobial Agents from the Stem Bark of Adenanthera pavonina L. Earthline Journal of Chemical Sciences, 4(2), 227-242.
2) Mujahid, M., Ansari, V. A., Sirbaiya, A. K., Kumar, R., & Usmani, A. (2016). An insight of pharmacognostic and phytopharmacology study of Adenanthera pavonina. Journal of Chemical and Pharmaceutical Research, 8(2), 586-596.
3) Zarnowski, Robert, et al. "The oil of Adenanthera pavonina L. seeds and its emulsions." Zeitschrift für Naturforschung C 59.5-6 (2004): 321-326.
4) Ara, Arzumand, et al. "Anti-inflammatory activity of Adenanthera pavonina L., Fabaceae, in experimental animals." Revista Brasileira de Farmacognosia 20 (2010): 929-932.
5) Mujahid, M., Ansari, V. A., Sirbaiya, A. K., Kumar, R., & Usmani, A. (2016). An insight of pharmacognostic and phytopharmacology study of Adenanthera pavonina. Journal of Chemical and Pharmaceutical Research, 8(2), 586-596.
6) Maruthappan, V. G., & Shree, K. S. (2010). Blood cholesterol lowering effect of adenanthera pavonina seed extract on atherogenic diet induced hyperlipidemia in rats. International Journal of Pharmaceutical Sciences and Research, 1(7), 87-94.
7) Kubeczka, K. H. (2020). History and sources of essential oil research. In Handbook of essential oils (pp. 3-39). CRC Press.
8) Gulcin, İ., & Alwasel, S. H. (2023). DPPH radical scavenging assay. Processes, 11(8), 2248.
9) Silva, I. K., & Soysa, P. (2011). Evaluation of phytochemical composition and antioxidant capacity of a decoction containing Adenanthera pavonina L. and Thespesia populnea L. Pharmacognosy Magazine, 7(27), 193.
10) Gulcin, İ., & Alwasel, S. H. (2023). DPPH radical scavenging assay. Processes, 11(8), 2248.
11) Hemeg, H. A., Moussa, I. M., Ibrahim, S., Dawoud, T. M., Alhaji, J. H., Mubarak, A. S., ... & Marouf, S. A. (2020). Antimicrobial effect of different herbal plant extracts against different microbial population. Saudi Journal of Biological Sciences, 27(12), 3221-3227.
12) Jayaraj, R. L., Beiram, R., Azimullah, S., Mf, N. M., Ojha, S. K., Adem, A., & Jalal, F. Y. (2020). Valeric acid protects dopaminergic neurons by suppressing oxidative stress, neuroinflammation and modulating autophagy pathways. International journal of molecular sciences, 21(20), 7670.
13) Jayaraj, R. L., Beiram, R., Azimullah, S., Mf, N. M., Ojha, S. K., Adem, A., & Jalal, F. Y. (2020). Valeric acid protects dopaminergic neurons by suppressing oxidative stress, neuroinflammation and modulating autophagy pathways. International journal of molecular sciences, 21(20), 7670.
14) Hammoudi, A., Zatla, A. T., & El Amine Dib, M. (2023). A Phytochemical and Antioxidant Study of the Hexanoic Extract of Rhaponticum acaule. Chemistry Proceedings, 14(1), 81.
15) Francke, W., & Schulz, S. (2010). 4.04-Pheromones of terrestrial invertebrates. Comprehensive natural products II, 153-223.
16) Caboni, P., Ntalli, N. G., Aissani, N., Cavoski, I., & Angioni, A. (2012). Nematicidal activity of (E, E)-2, 4-decadienal and (E)-2-decenal from Ailanthus altissima against Meloidogyne javanica. Journal of Agricultural and food Chemistry, 60(4), 1146-1151.
17) Music, J., Charlebois, S., Marangoni, A. G., Ghazani, S. M., Burgess, J., Proulx, A., ... & Patelli, Y. (2022). Data deficits and transparency: What led to Canada's ‘buttergate’. Trends in Food Science & Technology, 123, 334-342.
18) Habtemariam, S. (2019). The chemical and pharmacological basis of fenugreek (Trigonella foenum-graecum L.) as potential therapy for type 2 diabetes and associated diseases. Medicinal Foods as Potential Therapies for Type-2 Diabetes and Associated Diseases, 1, 579-637.
19) Dudau, A., Masou, R., Murdock, A., & Hunter, P. (2023). Public service resilience post-Covid: Introduction to the special issue. Public Management Review, 25(4), 681-689.
20) Atmaja, D. S., Fachrurazi, F., Abdullah, A., Fauziah, F., Zaroni, A. N., & Yusuf, M. (2022). Actualization of performance management models for the development of human resources quality, economic potential, and financial governance policy in Indonesia ministry of education.
21) Zekeya, N., Mamiro, B., Ndossi, H., Mallya, R. C., Kilonzo, M., Kisingo, A., ... & Chilongola, J. (2022). Screening and evaluation of cytotoxicity and antiviral effects of secondary metabolites from water extracts of Bersama abyssinica against SARS-CoV-2 Delta. BMC Complementary Medicine and Therapies, 22(1), 280.
22) Sambra, V., Echeverria, F., Valenzuela, A., Chouinard-Watkins, R., & Valenzuela, R. (2021). Docosahexaenoic and arachidonic acids as neuroprotective nutrients throughout the life cycle. Nutrients, 13(3), 986.
23) Watanabe, Y., & Tatsuno, I. (2021). Omega-3 polyunsaturated fatty acids focusing on eicosapentaenoic acid and docosahexaenoic acid in the prevention of cardiovascular diseases: a review of the state-of-the-art. Expert Review of Clinical Pharmacology, 14(1), 79-93.
24) Silva, I. K., & Soysa, P. (2011). Evaluation of phytochemical composition and antioxidant capacity of a decoction containing Adenanthera pavonina L. and Thespesia populnea L. Pharmacognosy Magazine, 7(27), 193.
25) Bisby F (1994). Phytochemical Dictionary of the Leguminosae, Volume 1. Chapman and Hall/CRC. pp. 53–54. ISBN 0-412-39770-6.

Most read articles by the same author(s)

1 2 3 > >>