ADVANTAGES OF USING LIPOSOME-ENCAPSULATED ANTIBIOTICS TO FIGHT INFECTIONS CAUSED BY ENTEROBACTERIA

Main Article Content

Dr. Rebecca Caruana
Hira Aslam
Nosheen Akhtar
Waqas Ahmad
Tariq Rafique
Sri Pranita Cherukuri
Dr Iqbal Nisa
Muhammad Saad Arshad

Keywords

Bacterial resistance, Gram-negative bacteria, Nanotechnology, Antimicrobials

Abstract

ABSTRACT:


Introduction: Treating illnesses caused by enterobacteria is increasingly challenging due to the ineffectiveness of antibiotics in combating pathogens or promoting reticuloendothelial system cell phagocytosis, especially for bacteria that colonize and grow inside phagocytic cells. Certain antibiotics are unable to penetrate cells or are limited by the plasma membrane. Consequently, there is a scientific effort to develop new therapeutic strategies to overcome these challenges. Lipid nanocarriers, such as liposomes, can encapsulate antibiotics to enhance their delivery, targeting, and efficacy. Liposomes aim to improve the specificity of release, concentration of compounds at the target site, maintenance of drug plasma concentration, and preservation of active components. This review aims to outline the key characteristics of liposomes and emphasize the benefits of using these lipid vesicles to deliver antibiotics against illnesses caused by enterobacteria.


Methodology: A literature review was conducted by searching national and international electronic databases for articles published between 2012 and 2023. Articles were selected based on the following descriptors: bacterial resistance, nanotechnology, gram-negative bacteria, and antibiotics.


Findings: Antibacterial activity has been demonstrated for cationic and stealth liposomes, primarily composed of cholesterol, PEG, phosphatidylcholine, and carboxymethyl chitosan encapsulating drugs such as amoxicillin, ciprofloxacin, cloxacillin, vancomycin, azithromycin, amoxicillin, cefepime, gentamicin, and cefotaxime. Liposomes containing polymyxin B, azithromycin, chloramphenicol, and gentamicin have shown improved antibiofilm efficacy against enterobacteria compared to non-encapsulated pharmaceuticals.


Conclusion: The findings highlight the significant therapeutic potential of liposomes in the management of enterobacteria-related illnesses.

Abstract 83 | Pdf Downloads 22

References

1. Ahsan, A., Thomas, N., Barnes, T. J., Subramaniam, S., Loh, T. C., Joyce, P., & Prestidge, C. A. (2024). Lipid Nanocarriers-Enabled Delivery of Antibiotics and Antimicrobial Adjuvants to Overcome Bacterial Biofilms. Pharmaceutics, 16(3), 396.
2. Allemailem, K. S. (2024). Recent Advances in Understanding the Molecular Mechanisms of Multidrug Resistance and Novel Approaches of CRISPR/Cas9-Based Genome-Editing to Combat This Health Emergency. International Journal of Nanomedicine, 1125-1143.
3. Bolsan, A. C., Sampaio, G. V., Rodrigues, H. C., De Souza, S. S., Edwiges, T., De Prá, M. C., & Gabiatti, N. C. (2024). Phage Formulations and Delivery Strategies: Unleashing the Potential Against Antibiotic-Resistant Bacteria. Microbiological Research, 127662.
4. Bose, S., Sarkar, N., & Jo, Y. (2024). Natural medicine delivery from 3D printed bone substitutes. Journal of Controlled Release, 365, 848-875.
5. Brandelli, A., Lopes, N. A., & Pinilla, C. M. B. (2023). Nanostructured antimicrobials for quality and safety improvement in dairy products. Foods, 12(13), 2549.
6. Caselli, L., Rodrigues, G. R., Franco, O. L., & Malmsten, M. (2023). Pulmonary delivery systems for antimicrobial peptides. Critical Reviews in Biotechnology, 1-18.
7. Drago, L., Minasi, V., Lembo, A., Uslenghi, A., Benedetti, S., Covi, M., . . . Deflorio, L. (2024). Antibiotic Resistance Profiles in Eye Infections: A Local Concern with a Retrospective Focus on a Large Hospital in Northern Italy. Microorganisms, 12(5), 984.
8. Fowoyo, P. T. (2024). Phage Therapy: Clinical Applications, Efficacy, and Implementation Hurdles. The Open Microbiology Journal, 18(1).
9. Gkartziou, F., & Antimisiaris, S. G. (2024). Liposomes for infectious diseases Liposomes in Drug Delivery (pp. 363-404): Elsevier.
10. Hajibonabi, A., Yekani, M., Sharifi, S., Nahad, J. S., Dizaj, S. M., & Memar, M. Y. (2023). Antimicrobial activity of nanoformulations of carvacrol and thymol: New trend and applications. OpenNano, 100170.
11. Johnson, G., Young, M., Gordon, J., & Preuss, C. (2023). Recent Developments in the Treatment of Bacterial Pneumonia. Infectious Diseases Drug Delivery Systems, 275-305.
12. Khambhati, K., Bhattacharjee, G., Gohil, N., Dhanoa, G. K., Sagona, A. P., Mani, I., . . . Jang, S. H. (2023). Phage engineering and phage‐assisted CRISPR‐Cas delivery to combat multidrug‐resistant pathogens. Bioengineering & Translational Medicine, 8(2), e10381.
13. Khater, S. I., Almanaa, T. N., Fattah, D. M. A., Khamis, T., Seif, M. M., Dahran, N., . . . Albedair, R. A. (2023). Liposome-encapsulated Berberine alleviates liver injury in type 2 diabetes via promoting AMPK/mTOR-mediated autophagy and reducing ER stress: morphometric and Immunohistochemical scoring. Antioxidants, 12(6), 1220.
14. Li, Y., Li, X.-m., Duan, H.-y., Yang, K.-d., & Ye, J.-f. (2024). Advances and optimization strategies in bacteriophage therapy for treating inflammatory bowel disease. Frontiers in Immunology, 15, 1398652.
15. Li, Z., Lei, Z., Cheng, D.-B., & Sun, T. (2023). MicroRNA therapeutics and nucleic acid nano-delivery systems in bacterial infection: a review. Journal of Materials Chemistry B.
16. Liñán-Atero, R., Aghababaei, F., García, S. R., Hasiri, Z., Ziogkas, D., Moreno, A., & Hadidi, M. (2024). Clove Essential Oil: Chemical Profile, Biological Activities, Encapsulation Strategies, and Food Applications. Antioxidants, 13(4), 488.
17. Liu, K., Wang, C., Zhou, X., Guo, X., Yang, Y., Liu, W., . . . Song, H. (2024). Bacteriophage therapy for drug-resistant Staphylococcus aureus infections. Frontiers in Cellular and Infection Microbiology, 14, 1336821.
18. Manicum, A.-L. E., Makgopa, K., Shabangu, T., Kumar, G. V., Agwamba, E. C., Shai, L. J., & Ghotekar, S. (2023). Nanotechnology-based therapeutics to combat biofilms and antibacterial resistance in chronic wound infections Bioengineered Nanomaterials for Wound Healing and Infection Control (pp. 175-206): Elsevier.
19. Mehmood Khan, F., Manohar, P., Singh Gondil, V., Mehra, N., Kayode Oyejobi, G., Odiwuor, N., . . . Huang, G. (2023). The applications of animal models in phage therapy: an update. Human Vaccines & Immunotherapeutics, 19(1), 2175519.
20. Mohanty, D., Suar, M., & Panda, S. K. (2023). Nanotechnological interventions in bacteriocin formulations–advances, and scope for challenging food spoilage bacteria and drug-resistant foodborne pathogens. Critical Reviews in Food Science and Nutrition, 1-18.
21. Pant, M., Kiran, K., Pande, V., Mishra, B., & Dandapat, A. (2024). Use of nano biotechnological methods for the analysis and stability of food antimicrobials and antioxidants Nanobiotechnology for Food Processing and Packaging (pp. 449-480): Elsevier.
22. Panthi, V. K., Fairfull-Smith, K. E., & Islam, N. (2024). Liposomal drug delivery strategies to eradicate bacterial biofilms: Challenges, recent advances, and future perspectives. International Journal of Pharmaceutics, 124046.
23. Paudel, S., Apostolakos, I., Vougat Ngom, R., Tilli, G., de Carvalho Ferreira, H. C., & Piccirillo, A. (2024). A systematic review and meta-analysis on the efficacy of vaccination against colibacillosis in broiler production. PLoS ONE, 19(3), e0301029.
24. Pinilla, C. M. B., Lopes, N. A., & Brandelli, A. (2023). Liposome-mediated encapsulation of antimicrobials and probiotics Liposomal Encapsulation in Food Science and Technology (pp. 65-86): Elsevier.
25. Plotniece, A., Sobolev, A., Supuran, C. T., Carta, F., Björkling, F., Franzyk, H., . . . De Vooght, L. (2023). Selected strategies to fight pathogenic bacteria. Journal of enzyme inhibition and medicinal chemistry, 38(1), 2155816.
26. Pushpalatha, C., Venkataramana, S., Ramesh, P., Kavya, B., Nagaraja, S., & Kumar, K. V. (2024). Nanoparticles to Abate Antibiotic Resistance During the Management of Dental Diseases Nanotechnology Based Strategies for Combating Antimicrobial Resistance (pp. 453-487): Springer.
27. Pylypenko, D., Grigoryeva, G., & Krasnopolsky, Y. M. (2023). PROSPECTS FOR THE CREATION OF LIPOSOMAL ANTIMICROBIALS BASED ON PHAGES. Biotechnologia Acta, 16(5), 22-33.
28. Rajangam, S. L., & Narasimhan, M. K. (2024). Current treatment strategies for targeting virulence factors and biofilm formation in Acinetobacter baumannii. Future Microbiology, 1-21.
29. Rindhe, S., Khan, A., Priyadarshi, R., Chatli, M., Wagh, R., Kumbhar, V., . . . Rhim, J. W. (2024). Application of bacteriophages in biopolymer‐based functional food packaging films. Comprehensive Reviews in Food Science and Food Safety, 23(3), e13333.
30. Roy, S., Hasan, I., & Guo, B. (2023). Recent advances in nanoparticle-mediated antibacterial applications. Coordination Chemistry Reviews, 482, 215075.
31. Saxena, D., Maitra, R., Bormon, R., Czekanska, M., Meiers, J., Titz, A., . . . Chopra, S. (2023). Tackling the outer membrane: facilitating compound entry into Gram-negative bacterial pathogens. npj Antimicrobials and Resistance, 1(1), 17.
32. Scoffone, V. C., Barbieri, G., Irudal, S., Trespidi, G., & Buroni, S. (2024). New Antimicrobial Strategies to Treat Multi-Drug Resistant Infections Caused by Gram-Negatives in Cystic Fibrosis. Antibiotics, 13(1), 71.
33. She, P., Li, Y., Li, Z., Liu, S., Yang, Y., Li, L., . . . Wu, Y. (2023). Repurposing 9-aminoacridine as an adjuvant enhances the antimicrobial effects of rifampin against multidrug-resistant Klebsiella pneumoniae. Microbiology Spectrum, 11(3), e04474-04422.
34. Torres Di Bello, D., Narváez, D. M., Groot de Restrepo, H., & Vives, M. J. (2023). Cytotoxic Evaluation in HaCaT Cells of the Pa. 7 Bacteriophage from Cutibacterium (Propionibacterium) acnes, Free and Encapsulated Within Liposomes. PHAGE, 4(1), 26-34.
35. Tripathi, A. K., Singh, J., Trivedi, R., & Ranade, P. (2023). Shaping the Future of Antimicrobial Therapy: Harnessing the Power of Antimicrobial Peptides in Biomedical Applications. Journal of Functional Biomaterials, 14(11), 539.
36. Wang, B., Du, L., Dong, B., Kou, E., Wang, L., & Zhu, Y. (2024). Current Knowledge and Perspectives of Phage Therapy for Combating Refractory Wound Infections. International Journal of Molecular Sciences, 25(10), 5465.
37. Wang, D.-Y. (2023). A self-targeting liposomal drug carrier with water as a pH-responsive functionality.
38. Xu, W., Yang, T., Zhang, J., Li, H., & Guo, M. (2024). Rhodiola rosea: a review in the context of PPPM approach. EPMA Journal, 1-27.
39. Yan, C., & Kim, S.-R. (2024). Microencapsulation for pharmaceutical applications: a review. ACS Applied Bio Materials, 7(2), 692-710.
40. Yang, J., Zhu, X., Xu, X., & Sun, Q. (2023). Recent knowledge in phages, phage-encoded endolysin, and phage encapsulation against foodborne pathogens. Critical Reviews in Food Science and Nutrition, 1-21.
41. Yao, J., Zou, P., Cui, Y., Quan, L., Gao, C., Li, Z., . . . Yang, M. (2023). Recent advances in strategies to combat bacterial drug resistance: antimicrobial materials and drug delivery systems. Pharmaceutics, 15(4), 1188.
42. Zhang, Y., Sharma, S., Tom, L., Liao, Y.-T., & Wu, V. C. (2023). Gut phagosome—An insight into the role and impact of gut microbiome and their correlation with mammal health and diseases. Microorganisms, 11(10), 2454.

Most read articles by the same author(s)

1 2 3 4 5 6 > >>