COMPARATIVE STUDY OF ZINC OXIDE OINTMENT AND ZINC OXIDE NANOPARTICLES AS A POTENTIAL WOUND HEALING SUBSTANCE IN RABBIT

Main Article Content

Maham Tariq
Sadaf Aslam
Danish Jeelani
Muhammad Ahmad
Huma Maqsood
Rukhshanda Parveen
Haider Ali Khan
Mahnoor Khan Jamali

Keywords

Nanoparticles, Antibacterial, Anticancer, Ointments, Wound Healing

Abstract

Nanotechnology has revolutionized medicine, with a focus on green nanoparticle production that is both friendly to the environment and cost effective. Biogenic nanoparticles have demonstrated great potential in wound healing, especially through nanotechnology drug delivery systems such as micelles, nanoparticles, nanoemulsions, and liposomes. These systems improve wound healing by lowering medication cytotoxicity, increasing skin penetration, and providing antimicrobial protection. Zinc oxide (ZnO) nanoparticles are particularly useful due to their antibacterial and anticancer characteristics. This study addressed the wound healing effects of ZnO nanoparticles in 18 rabbits separated into three groups: control (normal saline), ZnO nanoparticles, and ZnO ointments. Wound contraction size, hematological, and histology were evaluated on days 0, 5, 10, and 15. The results showed that ZnO nanoparticles significantly increased wound contraction and histological parameters such as angiogenesis and re-epithelization when compared to the control and ZnO ointment groups. The hematological study revealed no infection or harm. In conclusion, ZnO nanoparticles have better healing and therapeutic properties than ZnO ointment.

Abstract 53 | pdf Downloads 18

References

1. Ågren M S, Chvapil M, Franzén L. 1991. Enhancement of re-epithelialization with topical zinc oxide in porcine partial-thickness wounds. J. Surg. Res. 50(2): 101-105.
2. Atala A, Irvine D J, Moses M, Shaunak S. 2010. Wound Healing Versus Regeneration: Role of the Tissue Environment in Regenerative Medicine. MRS Bull. 35(8). 597-606.
3. Anitua E, Muruzabal F, Alcalde I, Merayo-Loves J, Orive G. 2013. Plasma rich in growth factors (PRGF-Endoret) stimulates corneal wound healing and reduces haze formation after PRK surgery. Exp. Eye. Res. 115: 153-161.
4. Anbuvannan M, Ramesh M, Viruthagiri G, Shanmugam N, Kannadasan N, Spectroscopy B. 2015. Synthesis, characterization and photocatalytic activity of ZnO nanoparticles prepared by biological method. J. Exp. Zool. 143: 304-308.
5. Augustine R, Mathew A P, Sosnik A. 2017. Metal oxide nanoparticles as versatile therapeutic agents modulating cell signaling pathways: linking nanotechnology with molecular medicine. Appl. Mater. Today. 7: 91-103.
6. Alberti T, S Coelho D, Voytena A, Pitz H, de Pra M, Mazzarino L, Kuhnen S, M Ribeiro-do-Valle R, Maraschin M. 2017. Nanotechnology: A promising tool towards wound healing. Curr. Pharm. Des. 23(24): 3515-3528.
7. Abdullah B J, Atasoy N, Omer A K, Surgery. 2019. Evaluate the effects of platelet rich plasma (PRP) and zinc oxide ointment on skin wound healing. Ann. Med. Surg. 37: 30-37.
8. Binnebösel M, Grommes J, Koenen B, Junge K, Klink CD, Stumpf M, Öttinger AP, Schumpelick V, Klinge U, Krones, C. J. 2010. Zinc deficiency impairs wound healing of colon anastomosis in rats. Int. J. Colorectal. Dis. 25(2): 251-2.
9. Basu, P., Kumar , U. N. Manjubala, I. 2017. Wound healing materials–a perspective for skin tissue engineering. J. Curr. Sci. 2392-2404.
10. Bhutta Z A, Ashar A, Mahfooz A, Khan J A, Saleem M I, Rashid A, Aqib AI , Kulyar M F A, Sarwar I, Shoaib. 2021. Enhanced wound healing activity of nano ZnO and nano Curcuma longa in third-degree burn. Appl. Nanosci., 11: 1267-1278.
11. Celeste C. J., Deschene K, Riley C. B., &Theoret, C. L. 2011. Regional differences in wound oxygenation during normal healing in an equine model of cutaneous fibroproliferative disorder. Wound Repair Regen. 19(1): 89-97.
12. Dart A, Perkins N, Dart C L, Canfield P. 2009. Effect of bandaging on second intention healing of wounds of the distal limb in horses. Aust. Vet.J. 87(6): 215-218.
13. Daniel WW, Cross CL. 2018. Biostatistics: a foundation for analysis in the health sciences. Wiley & Sons. p. 173-177, 267-340.
14. De B, Goswam. 2022. Nanobiotechnology–A Green Solution. J. Biotechnol. 379-396.
15. Firooz A, Nafisi S, Maibach H I. 2015. Novel drug delivery strategies for improving econazole antifungal action. Int. J. Pharm. 495(1): 599-607.
16. Graham, J. E. 2004. Rabbit wound management. Vet. Clin. North. Am. Exot. Anim. Pract. 7(1): 37-55.
17. Garcia-Orue, I Gainza, G Villullas, S Pedraz, J. L. Hernandez, R. M, Igartua, M. 2016. Nanotechnology approaches for skin wound regeneration using drug-delivery systems. Nanobiomaterials in soft tissue engineering. William Andrew Publishing. Vol: 5, pg: 127-130.
18. Gousalya V, Prabu D, Rajmohan M, Bharathwaj V, Dhamodhar D, Elakiya S. 2022. Assessment of oral hygiene among the soviet chinchilla and newzealand white rabbit–a cross-sectional survey. Int. Multidiscip. Res. J. 8(7): 423-42
19. Henglein A. 1989. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 89(8): 1861-1873.
20. Jalil M, Jilani G, Noman M, ur Rehman A, Malik M. I. 2020. Healing Efficiency of Zinc Oxide Nanoparticles in Various Concentrations on the Full Thickness Wounds in Rabbits (Oryctolagus Cuniculus). Ann. Romanian. Soc. Cell. Biol. 1237-1245.
21. Jorgensen, E Bjamsholt, T Jacobson, S. 2021. Biofilm and equine limb wounds. J. Anim. 11(10), 2825.
22. Keefer, K A, Iocono J. A, Ehrlich, H. P. 1998. Zinc-containing wound dressings encourage autolytic debridement of dermal burns. Wounds-a compendium of clinical research and practice. 10(2): 54-58.
23. Kumar A, Dixit CK. 2017. Methods for characterization of nanoparticles. In. Advances in nanomedicine for the delivery of therapeutic nucleic acids. Woodhead Publishing. p. 43-58.
24. Kaushik M, Niranjan R, Thangam R, Madhan B, Pandiyarasan V, Ramachandran C, Oh D-H, Venkatasubbu G. D. 2019. Investigations on the antimicrobial activity and wound healing potential of ZnO nanoparticles. Appl. Surf. Sci. 479: 1169-1177.
25. Lee A-R C, Moon H K. 2003. Effect of topically applied silver sulfadiazine on fibroblast cell proliferation and biomechanical properties of the wound. Archives of pharmacal research. 26: 855-860.
26. Lemo, N., Marignac, G., Reyes-Gomez, E., Lilin, T., Crosaz, O. & Ehrenfest, D. D. 2010. Cutaneous reepithelialization and wound contraction after skin biopsies in rabbits: a mathematical model for healing and remodelling index. Vet. Arh., 80, 637-52.
27. Logas, D. 2021. When, Where, and How to Biopsy Skin. J. Clin. Diagn. Res, 33-38.
28. Lux CN. 2022. Wound healing in animals: a review of physiology and clinical evaluation. Vet. Dermaol. 33(1): 91-27.
29. McDougall, S Dallon, J Sherratt, J Maini, P. 2006. Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications. Philos. Trans. Royal Soc. A. PHILOS. T. R. SOC. A. 364(1843): 1385-1405.
30. Masood, N., Ahmed, R., Tariq, M., Ahmed, Z., Masud, M. S., Ali, I., Asghar, R., Andleeb, A. & Hasan, A. 2019. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int. J. Pharm. 559, 23-36.
31. Naderi N, Karponis D, Mosahebi A, Seifalian, A. M. 2018. Nanoparticles in wound healing; from hope to promise, from promise to routine. Front. Biosci. 23(6): 1038-1059.
32. Ovais M, Ayaz M, Khalil AT, Shah SA, Jan MS, Raza A, Shahid M, Shinwari Z K, Medicine A. 2018. HPLC-DAD finger printing, antioxidant, cholinesterase, and α-glucosidase inhibitory potentials of a novel plant Olax nana.BMC complement. Altern. Med. 18(1): 1-13.
33. Pitout J D. 2012. Extraintestinal pathogenic Escherichia coli: a combination of virulence with antibiotic resistance. Front. Microbiol. 3: 9.
34. Paulkumar K, Rajeshkumar S, Gnanajobitha G, Vanaja M, Malarkodi C, Annadurai G. 2013. Biosynthesis of silver chloride nanoparticles using Bacillus subtilis MTCC 3053 and assessment of its antifungal activity. Int. Sch. Res. Notices. 2013.
35. Raguvaran R, Manuja A, Manuja B K. 2015. Zinc oxide nanoparticles: opportunities and challenges in veterinary sciences.Immunome Res. 11(2): 1.
36. Rajendran NK, Kumar SSD, Houreld N N, Abrahamse H J, Technology. 2018. A review on nanoparticle based treatment for wound healing. J. Drug. Deliv. Sci. Technol. 44: 421-430.
37. Schwartz, A. J., Wilson, D. A., Keegan, K. G., Ganjam, V. K., SUN, Y., Weber, K. T. & Zhang, J. 2002. Factors regulating collagen synthesis and degradation during second-intention healing of wounds in the thoracic region and the distal aspect of the forelimb of horses. Am. J. Vet. Res. 63, 1564-1570.
38. Sathyavathi R, Krishna M B, Rao S V, Saritha R, Rao D N. 2010. Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv. Sci. Lett.3(2): 138-143.
39. Syed A, Ahmad A, Biointerfaces SB. 2012. Extracellular biosynthesis of platinum nanoparticles using the fungus Fusarium oxysporum. Colloids. Surf. B. 97: 27-31.
40. Salam H A, Sivaraj R, Venckatesh R. 2014. Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth.-Lamiaceae leaf extract. Mater. Lett. 131: 16-18.
41. Shirzad-Siboni M, Khataee A, Vahid B, W Joo S, Fallah S. 2014. Preparation of a green photocatalyst by immobilization of synthesized ZnO nanosheets on scallop shell for degradation of an azo dye.Curr. Nanosci. 10(5): 684-694.
42. Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. 2017. Skin wound healing: an update on the current knowledge and concepts. Eur. Surg. Res. 58(1-2): 81-94.
43. Sparks, H. D., Sigaeva, T., Tarraf, S., Mandla, S., Pope, H., Hee, O., Di Martino, E. S., Biernaskie, J., Radisic, M. & Scott, W. M. 2020. Biomechanics of wound healing in an equine limb model: effect of location and treatment with a peptide-modified collagen–chitosan hydrogel. ACS Biomater. Sci. Eng.,7, 265-278.
44. Yadav E, Yadav P, Verma A J, Technology. 2021. Amelioration of full thickness dermal wounds by topical application of biofabricated zinc oxide and iron oxide nano-ointment in albino Wistar rats. J. Drug. Deliv. Sci. Technol. 66: 102833.

Most read articles by the same author(s)