EFFECT OF DIETARY MARINE YEAST AND SACCHAROMYCES CEREVISIAE ON MICROBIAL COMPOSITION AND IMMUNE RESPONSE OF CYPRINUS CARPIO

Main Article Content

Sumbal
Shakeela Parveen
Fayyaz Rasool
Amina Ayub
Muhammad Ahmad
Arooj
Sadia Parveen
Orba
Talib Hussain

Keywords

Aquaculture, Common Carp, dietary marine yeast, common mental disorders, Baker’s yeast, Micro-biota, Immune response

Abstract

This research was conducted to investigate the effect of dietary marine yeast (DMY) and Saccharomyces cerevisiae on microbial composition and immune response of Common Carp (Cyprinus carpio). Using natural products like dietary marine yeast was beneficial for Common Carp's immune system and improved microbial community health. In Carp's, S. cerevisiae served as a beneficial replacement for the usage of antibiotics and vaccinations. For this experiment, 60 fingerlings were reared under semi-intensive culture condition using earthen ponds and three (T0, T1 and T2) experimental groups were made for this research for 90 days. T0 was fed with commercial fish feed and considered to be control group while T1 was fed with dietary marine yeast and T2 was treated with Baker’s yeast to check immune response and microbiota composition. To identify the effect on micro-biotic composition in fish samples were taken from Common Carp intestine, gills and analyses were done in microbiology lab on different culture media like nutrient agar and tryptic soy agar. The statistical design of this experiment was ANOVA and p-value was statistically indicated that the results was observed for intestine, gills microbial composition and immune response highly significant; (0.0006<0.05) and (0.000912<0.05) indicating that treatment difference was highly significant at (p <0.05). Also, Tukey test was used to compare the treatment means, T0, T1 and T2 and the results of all these values were also statistically significant. These results highlight the potential benefits of yeast based diet as a nutritional supplement is might be highly suitable for intestinal health and animal welfare of omnivorous fishes because they contain nucleotide-rich and β-glucan diet which show efficiency in aquaculture systems.

Abstract 223 | PDF Downloads 52

References

1. Abdelhamid, F. M., Elshopakey, G. E., & Aziza, A. E. (2020). Ameliorative effects of dietary Chlorella vulgaris and β-glucan against diazinon-induced toxicity in Nile tilapia (Oreochromis niloticus). Fish & shellfish immunology, 96, 213-222.
2. Abdel-Tawwab, M., Mounes, H. A., Shady, S. H., & Ahmed, K. M. (2021). Effects of yucca, Yucca schidigera, extract and/or yeast, Saccharomyces cerevisiae, as water additives on growth, biochemical, and antioxidants/oxidant biomarkers of Nile tilapia, Oreochromis niloticus. Aquaculture, 533, 736122.
3. Carballo, C., Pinto, P. I., Mateus, A. P., Berbel, C., Guerreiro, C. C., Martinez-Blanch, J. F., ... & Manchado, M. (2019). Yeast β-glucans and microalgal extracts modulate the immune response and gut microbiome in Senegalese sole (Solea senegalensis). Fish & Shellfish Immunology, 92, 31-39.
4. Egwui, P. C., Mgbenka, B. O., & Ezeonyejiaku, C. D. (2013). Moringa plant and it use as feed in aquaculture development: a review. Animal Research International, 10(1), 1673-1680.
5. El-Bab, A. F. F., Saghir, S. A., El-Naser, I. A. A., El-Kheir, S. M. A., Abdel-Kader, M. F., Alruhaimi, R. S., ... & El-Raghi, A. A. (2022). The effect of dietary Saccharomyces cerevisiae on growth performance, oxidative status, and immune response of sea bream (Sparus aurata). Life, 12(7), 1013.
6. Gephart, J. A., Golden, C. D., Asche, F., Belton, B., Brugere, C., Froehlich, H. E., ... & Allison, E. H. (2020). Scenarios for global aquaculture and its role in human nutrition. Reviews in Fisheries Science & Aquaculture, 29(1), 122-138.
7. Hoseinifar, S. H., Roosta, Z., Hajimoradloo, A., & Vakili, F. (2015). The effects of Lactobacillus acidophilus as feed supplement on skin mucosal immune parameters, intestinal microbiota, stress resistance and growth performance of black swordtail (Xiphophorus helleri). Fish & shellfish immunology, 42(2), 533-538.
8. Jain, D., Shivani, Bhojiya, A. A., Singh, H., Daima, H. K., Singh, M., ... & Singh, A. (2020). Microbial fabrication of zinc oxide nanoparticles and evaluation of their antimicrobial and photocatalytic properties. Frontiers in chemistry, 8, 778.
9. Khan, M. N., Shahzad, K., Chatta, A., Sohail, M., Piria, M., & Treer, T. (2016). A review of introduction of common carp in Pakistan: origin, purpose, impact and management. Croatian Journal of Fisheries, 74(2), 71-80.
10. Kobayashi, M., Msangi, S., Batka, M., Vannuccini, S., Dey, M. M., & Anderson, J. L. (2015). Fish to 2030: the role and opportunity for aquaculture. Aquaculture economics & management, 19(3), 282-300.
11. Li, D., Wang, Z., Wu, S., Miao, Z., Du, L., & Duan, Y. (2020). Automatic recognition methods of fish feeding behavior in aquaculture: A review. Aquaculture, 528, 735508.
12. Lulijwa, R., Alfaro, A. C., Merien, F., Burdass, M., Meyer, J., Venter, L., & Young, T. (2020). Metabolic and immune responses of Chinook salmon (Oncorhynchus tshawytscha) smolts to a short‐term Poly (I: C) challenge. Journal of fish biology, 96(3), 731-746.
13. Licona-Jain, A., Racotta, I., Angulo, C., Luna-González, A., Escamilla-Montes, R., Cortés-Jacinto, E., ... & Campa-Córdova, Á. I. (2022). Combined administration routes of marine yeasts enhanced immune-related genes and protection of white shrimp (Penaeus vannamei) against Vibrio parahaemolyticus. Fish & Shellfish Immunology, 124, 192-200.
14. Mes, W., Lücker, S., Jetten, M. S., Siepel, H., Gorissen, M., & van Kessel, M. A. (2023). Comparison of the gill and gut microbiomes of common carp (Cyprinus carpio) and zebrafish (Danio rerio) and their RAS environment. Science of the Total Environment, 896, 165212.
15. Miranda, C. D., Godoy, F. A., & Lee, M. R. (2018). Current status of the use of antibiotics and the antimicrobial resistance in the Chilean salmon farms. Frontiers in microbiology, 9, 362731.
16. Mustapha, U. F., Alhassan, A. W., Jiang, D. N., & Li, G. L. (2021). Sustainable aquaculture development: a review on the roles of cloud computing, internet of things and artificial intelligence (CIA). Reviews in Aquaculture, 13(4), 2076-2091.
17. Opiyo, M. A., Jumbe, J., Ngugi, C. C., & Charo-Karisa, H. (2019). Dietary administration of probiotics modulates non-specific immunity and gut microbiota of Nile tilapia (Oreochromis niloticus) cultured in low input ponds. International journal of veterinary science and medicine, 7(1), 1-9.
18. Pauly, D., & Zeller, D. (2017). Comments on FAOs state of world fisheries and aquaculture (SOFIA 2016). Marine Policy, 77, 176-181.
19. Rahman, M. M. (2015). Role of common carp (Cyprinus carpio) in aquaculture production systems. Frontiers in Life Science, 8(4), 399-410.
20. Reyes-Becerril, M., Alamillo, E., & Angulo, C. (2021). Probiotic and immunomodulatory activity of marine yeast Yarrowia lipolytica strains and response against Vibrio parahaemolyticus in fish. Probiotics and Antimicrobial Proteins, 13, 1292-1305.
21. Ruzauskas, M., Armalytė, J., Lastauskienė, E., Šiugždinienė, R., Klimienė, I., Mockeliūnas, R., & Bartkienė, E. (2021). Microbial and antimicrobial resistance profiles of microbiota in common carps (Cyprinus carpio) from aquacultured and wild fish populations. Animals, 11(4), 929.
22. Ruzauskas, M., Armalytė, J., Lastauskienė, E., Šiugždinienė, R., Klimienė, I., Mockeliūnas, R., & Bartkienė, E. (2021). Microbial and antimicrobial resistance profiles of microbiota in common carps (Cyprinus carpio) from aquacultured and wild fish populations. Animals, 11(4), 929.
23. Sanahuja, I., Fernandez-Alacid, L., Torrecillas, S., Ruiz, A., Vallejos-Vidal, E., Firmino, J. P., ... & Gisbert, E. (2023). Dietary Debaryomyces hansenii promotes skin and skin mucus defensive capacities in a marine fish model. Frontiers in Immunology, 14, 1247199.
24. Segner, H., Wenger, M., Möller, A. M., Köllner, B., & Casanova-Nakayama, A. (2012). Immunotoxic effects of environmental toxicants in fish—how to assess them? Environmental science and pollution research, 19, 2465-2476.
25. Sørensen, M., Berge, G. M., Reitan, K. I., & Ruyter, B. (2016). Microalga Phaeodactylum tricornutum in feed for Atlantic salmon (Salmo salar)—Effect on nutrient digestibility, growth and utilization of feed. Aquaculture, 460, 116-123.
26. Thilsted, S. H., Thorne-Lyman, A., Webb, P., Bogard, J. R., Subasinghe, R., Phillips, M. J., & Allison, E. H. (2016). Sustaining healthy diets: The role of capture fisheries and aquaculture for improving nutrition in the post-2015 era. Food Policy, 61, 126-131.
27. Xu, P., Zhang, X., Wang, X., Li, J., Liu, G., Kuang, Y., ... & Sun, X. (2014). Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nature genetics, 46(11), 1212-1219.
28. Yousefi, M., Vatnikov, Y. A., Kulikov, E. V., Plushikov, V. G., Drukovsky, S. G., Hoseinifar, S. H., & Van Doan, H. (2020). The protective effects of dietary garlic on common carp (Cyprinus carpio) exposed to ambient ammonia toxicity. Aquaculture, 526, 735400.
29. Zhou, Z., Sun, B., Yu, D., & Zhu, C. (2022). Gut microbiota: an important player in type 2 diabetes mellitus. Frontiers in cellular and infection microbiology, 12, 834485.
30. Zheng, L., Xie, S., Zhuang, Z., Liu, Y., Tian, L., & Niu, J. (2021). Effects of yeast and yeast extract on growth performance, antioxidant ability and intestinal microbiota of juvenile Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 530, 735941.

Most read articles by the same author(s)