BIODIVERSITY DECLINE: CONSEQUENCES OF CLIMATE CHANGE AND INTENSIVE AGRICULTURE

Main Article Content

Wilson Pedro António
André Luindula Kilton Paulo
Simbarashe Chiro
Epifanio Augusto Tunguila Imbinga
Valsino De Rogério Mateus Bartolomeu
Md Naim
Tariq Rafique
Naseem Tariq

Keywords

mountains, intensive farming, soybeans, biotechnology, agriculture, meso-institutions

Abstract

Background: The overuse of natural resources, invasive species, climate change, extensive livestock rearing, and agriculture significantly impact biodiversity. Intensive cultivation of soybeans has notably displaced the production of other crops, such as wheat and rice, due to its high demand for agrochemicals, posing detrimental effects on the environment and biodiversity.


Objective: This study aims to compile existing research on the decline in biodiversity resulting from climate change and intensive agriculture and to explore potential ramifications for human-nature interactions.


Methods: A systematic review was conducted in April 2021 using Boolean operators "AND," "OR," and "NOT" with the phrases "biodiversity," "climate change," and "agriculture" in Scopus, Web of Science, and Scielo databases.


Results: Findings indicate a significant loss of biodiversity due to climate change and the expansion of intensive agriculture. This loss extends beyond regions directly affected by soybean cultivation, impacting mountain areas indirectly through human and animal consumption of soy derivatives. Results were retrieved from Web of Science (99 topics), Scopus (155 topics), and Scielo (36 topics).


Conclusion: Biodiversity is crucial for sustainability, providing food security and disease prevention for humans. Its conservation necessitates robust public policies aligned with the objectives of the Convention on Biological Diversity.

Abstract 132 | PDF Downloads 29

References

1. Arnold, M., Powell, B., Shanley, P., & Sunderland, T. C. (2011). Forests, biodiversity and food security. International Forestry Review, 13(3), 259-264.
2. Belote, R. T., Beier, P., Creech, T., Wurtzebach, Z., & Tabor, G. (2020). A framework for developing connectivity targets and indicators to guide global conservation efforts. BioScience, 70(2), 122-125.
3. Beyer, R. M., Hua, F., Martin, P. A., Manica, A., & Rademacher, T. (2022). Relocating croplands could drastically reduce the environmental impacts of global food production. Communications Earth & Environment, 3(1), 49.
4. Butchart, S. H., Scharlemann, J. P., Evans, M. I., Quader, S., Arico, S., Arinaitwe, J., Balman, M., Bennun, L. A., Bertzky, B., & Besancon, C. (2012). Protecting important sites for biodiversity contributes to meeting global conservation targets. PloS one, 7(3), e32529.
5. Cabral, F. D. F., Yin, C., Wague, J. L. T., & Yin, Y. (2023). Analysis of China–Angola Agricultural Cooperation and Strategies Based on SWOT Framework. Sustainability, 15(10), 8378.
6. Clark, J. S., & McLachlan, J. S. (2003). Stability of forest biodiversity. Nature, 423(6940), 635-638.
7. Correia, C. D., Amraoui, M., & Santos, J. A. (2024). Analysis of the Impacts of Climate Change on Agriculture in Angola: Systematic Literature Review. Agronomy, 14(4), 783.
8. Correia, C. D. N. C., Amraoui, M., & Santos, J. C. A. (2024). Impacts of Climate Change on agriculture in Angola: analysis of agroclimatic and bioclimatic indicators.
9. Danovaro, R., Fanelli, E., Aguzzi, J., Billett, D., Carugati, L., Corinaldesi, C., Dell’Anno, A., Gjerde, K., Jamieson, A. J., & Kark, S. (2020). Ecological variables for developing a global deep-ocean monitoring and conservation strategy. Nature Ecology & Evolution, 4(2), 181-192.
10. Dobrovolski, R., Diniz-Filho, J. A. F., Loyola, R. D., & De Marco Júnior, P. (2011). Agricultural expansion and the fate of global conservation priorities. Biodiversity and Conservation, 20, 2445-2459.
11. ElShahed, S. M., Mostafa, Z. K., Radwan, M. H., & Hosni, E. M. (2023). Modeling the potential global distribution of the Egyptian cotton leafworm, Spodoptera littoralis under climate change. Scientific Reports, 13(1), 17314.
12. Gardner, T. A., Barlow, J., Chazdon, R., Ewers, R. M., Harvey, C. A., Peres, C. A., & Sodhi, N. S. (2009). Prospects for tropical forest biodiversity in a human‐modified world. Ecology letters, 12(6), 561-582.
13. Green, J. K., Ballantyne, A., Abramoff, R., Gentine, P., Makowski, D., & Ciais, P. (2022). Surface temperatures reveal the patterns of vegetation water stress and their environmental drivers across the tropical Americas. Global Change Biology, 28(9), 2940-2955.
14. Hansen, A. J., Spies, T. A., Swanson, F. J., & Ohmann, J. L. (1991). Conserving biodiversity in managed forests. BioScience, 41(6), 382-392.
15. Hendershot, J. N., Smith, J. R., Anderson, C. B., Letten, A. D., Frishkoff, L. O., Zook, J. R., Fukami, T., & Daily, G. C. (2020). Intensive farming drives long-term shifts in avian community composition. Nature, 579(7799), 393-396.
16. Hu, W., Ran, J., Dong, L., Du, Q., Ji, M., Yao, S., Sun, Y., Gong, C., Hou, Q., & Gong, H. (2021). Aridity-driven shift in biodiversity–soil multifunctionality relationships. Nature Communications, 12(1), 5350.
17. Huntley, B. J. (2023a). Ecology of Angola: Terrestrial biomes and ecoregions. Springer Nature.
18. Huntley, B. J. (2023b). Key Elements of Angolan Terrestrial Ecology. In Ecology of Angola: Terrestrial Biomes and Ecoregions (pp. 407-421). Springer.
19. Huntley, B. J. (2023c). Soil, water and nutrients. In Ecology of Angola: Terrestrial Biomes and Ecoregions (pp. 127-147). Springer.
20. Larsson, T. (2001). Biodiversity evaluation tools for European forests. Criteria and indicators for sustainable forest management at the forest management unit level, 75.
21. Loft, T., Stevens, N., Gonçalves, F. M. P., & Oliveras Menor, I. (2024). Extensive woody encroachment altering Angolan miombo woodlands despite cropland expansion and frequent fires. Global Change Biology, 30(2), e17171.
22. Magris, R. A., Costa, M. D., Ferreira, C. E., Vilar, C. C., Joyeux, J. C., Creed, J. C., Copertino, M. S., Horta, P. A., Sumida, P. Y., & Francini‐Filho, R. B. (2021). A blueprint for securing Brazil's marine biodiversity and supporting the achievement of global conservation goals. Diversity and Distributions, 27(2), 198-215.
23. Medail, F., & Quezel, P. (1999). Biodiversity hotspots in the Mediterranean Basin: setting global conservation priorities. Conservation biology, 13(6), 1510-1513.
24. Noss, R. F. (1999). Assessing and monitoring forest biodiversity: a suggested framework and indicators. Forest ecology and management, 115(2-3), 135-146.
25. Omotoso, A. B., Letsoalo, S., Olagunju, K. O., Tshwene, C. S., & Omotayo, A. O. (2023). Climate change and variability in sub-Saharan Africa: A systematic review of trends and impacts on agriculture. Journal of Cleaner Production, 137487.
26. Ortiz, A. M. D., Outhwaite, C. L., Dalin, C., & Newbold, T. (2021). A review of the interactions between biodiversity, agriculture, climate change, and international trade: research and policy priorities. One Earth, 4(1), 88-101.
27. Outhwaite, C. L., McCann, P., & Newbold, T. (2022). Agriculture and climate change are reshaping insect biodiversity worldwide. Nature, 605(7908), 97-102.
28. Pimm, S. L., Russell, G. J., Gittleman, J. L., & Brooks, T. M. (1995). The future of biodiversity. Science, 269(5222), 347-350.
29. Poniatowski, D., Beckmann, C., Löffler, F., Münsch, T., Helbing, F., Samways, M. J., & Fartmann, T. (2020). Relative impacts of land‐use and climate change on grasshopper range shifts have changed over time. Global Ecology and Biogeography, 29(12), 2190-2202.
30. Purvis, A., & Hector, A. (2000). Getting the measure of biodiversity. Nature, 405(6783), 212-219.
31. Raven, P. H., & Wagner, D. L. (2021). Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proceedings of the National Academy of Sciences, 118(2), e2002548117.
32. Rosa, L. (2022). Adapting agriculture to climate change via sustainable irrigation: biophysical potentials and feedbacks. Environmental Research Letters, 17(6), 063008.
33. Rozzi, R., Armesto, J. J., Goffinet, B., Buck, W., Massardo, F., Silander, J., Arroyo, M. T., Russell, S., Anderson, C. B., & Cavieres, L. A. (2008). Changing lenses to assess biodiversity: patterns of species richness in sub‐Antarctic plants and implications for global conservation. Frontiers in Ecology and the Environment, 6(3), 131-137.
34. Shin, Y. J., Midgley, G. F., Archer, E. R., Arneth, A., Barnes, D. K., Chan, L., Hashimoto, S., Hoegh‐Guldberg, O., Insarov, G., & Leadley, P. (2022). Actions to halt biodiversity loss generally benefit the climate. Global Change Biology, 28(9), 2846-2874.
35. Simberloff, D. (1999). The role of science in the preservation of forest biodiversity. Forest ecology and management, 115(2-3), 101-111.
36. Sulis, E., Bacchetta, G., Cogoni, D., Gargano, D., & Fenu, G. (2020). Assessing the global conservation status of the rock rose Helianthemum caput-felis. Oryx, 54(2), 197-205.
37. Sutherland, W. J., Butchart, S. H., Connor, B., Culshaw, C., Dicks, L. V., Dinsdale, J., Doran, H., Entwistle, A. C., Fleishman, E., & Gibbons, D. W. (2018). A 2018 horizon scan of emerging issues for global conservation and biological diversity. Trends in Ecology & Evolution, 33(1), 47-58.
38. Taillardat, P., Thompson, B. S., Garneau, M., Trottier, K., & Friess, D. A. (2020). Climate change mitigation potential of wetlands and the cost-effectiveness of their restoration. Interface Focus, 10(5), 20190129.
39. Tobias, J. A., & Pigot, A. L. (2019). Integrating behaviour and ecology into global biodiversity conservation strategies. Philosophical Transactions of the Royal Society B, 374(1781), 20190012.
40. Tsiafouli, M. A., Thébault, E., Sgardelis, S. P., De Ruiter, P. C., Van Der Putten, W. H., Birkhofer, K., Hemerik, L., De Vries, F. T., Bardgett, R. D., & Brady, M. V. (2015). Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology, 21(2), 973-985.
41. Vanbergen, A. J., Aizen, M. A., Cordeau, S., Garibaldi, L. A., Garratt, M. P., Kovács-Hostyánszki, A., Lecuyer, L., Ngo, H. T., Potts, S. G., & Settele, J. (2020). Transformation of agricultural landscapes in the Anthropocene: Nature's contributions to people, agriculture and food security. In Advances in Ecological Research (Vol. 63, pp. 193-253). Elsevier.
42. Wilson, R. J., & Fox, R. (2021). Insect responses to global change offer signposts for biodiversity and conservation. Ecological entomology, 46(4), 699-717.
43. Zhang, Y., Tariq, A., Hughes, A. C., Hong, D., Wei, F., Sun, H., Sardans, J., Peñuelas, J., Perry, G., & Qiao, J. (2023). Challenges and solutions to biodiversity conservation in arid lands. Science of the Total Environment, 857, 159695.

Most read articles by the same author(s)

1 2 3 4 5 > >>