ILLUMINATING THE ROLE OF TP53 IN ACUTE LYMPHOBLASTIC LEUKEMIA (ALL) USING INTEGRATED BIOINFORMATICS METHODOLOGY
Main Article Content
Keywords
TP53, ALL, Cancer, Biomarker, Treatment
Abstract
In this study, we investigated the expression pattern, promoter methylation pattern, and diagnostic significance of TP53 in acute lymphoblastic leukemia (ALL) through a multi-faceted bioinformatics approach. Utilizing the GSE48558 dataset from the GEO database, we observed a significant down-regulation of TP53 mRNA expression in ALL samples compared to normal controls (P value < 0.05). ROC curve analysis further demonstrated TP53's robust discriminatory power, highlighting its promise as a diagnostic marker for ALL. Subsequent investigation using the UALCAN database revealed consistent TP53 expression patterns across different races and genders of ALL patients, with no significant differences observed (P values > 0.05). Additionally, promoter methylation analysis indicated a slight elevation in TP53 promoter methylation levels in African-American and Asian ALL patients compared to Caucasians, although these differences were not significant (P value > 0.05). Survival analysis using the KM plotter tool revealed that low TP53 expression correlated with poorer overall survival (OS) among ALL patients (P value < 0.05), suggesting its potential as a prognostic biomarker. Our findings underscore the diagnostic and prognostic significance of TP53 in ALL, providing valuable insights for future research and clinical interventions. These results emphasize the importance of TP53 in guiding therapeutic strategies and improving outcomes for ALL patients.
References
2. Zhang L, Sahar AM, Li C, Chaudhary A, Yousaf I, Saeedah MA, et al. A detailed multi-omics analysis of GNB2 gene in human cancers. Braz J Biol. 2022;17(84):1519-6984.
3. Hameed Y, Ejaz S. TP53 lacks tetramerization and N-terminal domains due to novel inactivating mutations detected in leukemia patients. J Cancer Res Ther. 2021;17(4):931-7.
4. Aldoss IT, Marcucci G, Pullarkat V. Treatment of Acute Lymphoblastic Leukemia in Adults: Applying Lessons Learned in Children. Oncology. 2016;30(12):1080-91.
5. Vrooman LM, Silverman LB. Treatment of Childhood Acute Lymphoblastic Leukemia: Prognostic Factors and Clinical Advances. Curr Hematol Malig Rep. 2016;11(5):385-94.
6. Khalil T, Okla MK, Al-Qahtani WH, Ali F, Zahra M, Shakeela Q, et al. Tracing probiotic producing bacterial species from gut of buffalo (Bubalus bubalis), South-East-Asia. Braz J Biol. 2022;11(84):1519-6984.
7. Rivlin N, Brosh R, Oren M, Rotter V. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer. 2011;2(4):466-74.
8. Yasir M, Nawaz A, Ghazanfar S, Okla MK, Chaudhary A, Al WH, et al. Anti-bacterial activity of essential oils against multidrug-resistant foodborne pathogens isolated from raw milk. Braz J Biol. 2022;9(84):1519-6984.
9. Marei HE, Althani A, Afifi N, Hasan A, Caceci T, Pozzoli G, et al. p53 signaling in cancer progression and therapy. Cancer Cell International. 2021 2021/12/24;21(1):703.
10. Hu H, Umair M, Khan SA, Sani AI, Iqbal S, Khalid F, et al. CDCA8, a mitosis-related gene, as a prospective pan-cancer biomarker: implications for survival prognosis and oncogenic immunology. Am J Transl Res. 2024;16(2):432-45.
11. Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal transduction and targeted therapy. 2023 2023/03/01;8(1):92.
12. Chen X, Zhang T, Su W, Dou Z, Zhao D, Jin X, et al. Mutant p53 in cancer: from molecular mechanism to therapeutic modulation. Cell death & disease. 2022 2022/11/18;13(11):974.
13. Clough E, Barrett T. The Gene Expression Omnibus Database. Methods Mol Biol. 2016:3578-9_5.
14. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic acids research. 2013;41(D1):D991-D5.
15. Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, et al. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia. 2022;25:18-27.
16. Lánczky A, Győrffy B. Web-Based Survival Analysis Tool Tailored for Medical Research (KMplot): Development and Implementation. J Med Internet Res. 2021;23(7):27633.
17. Ekpa QL, Akahara PC, Anderson AM, Adekoya OO, Ajayi OO, Alabi PO, et al. A Review of Acute Lymphocytic Leukemia (ALL) in the Pediatric Population: Evaluating Current Trends and Changes in Guidelines in the Past Decade. Cureus. 2023;15(12).
18. Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J. 2017;7(6):53.
19. Lee JW, Cho B. Prognostic factors and treatment of pediatric acute lymphoblastic leukemia. Korean J Pediatr. 2017;60(5):129-37.
20. Usman M, Hameed Y, Ahmad M. Does human papillomavirus cause human colorectal cancer? Applying Bradford Hill criteria postulates. ecancermedicalscience. 2020;14(1107).
21. Xu W, Li H, Hameed Y, Abdel-Maksoud MA, Almutairi SM, Mubarak A, et al. Elucidating the clinical and immunological value of m6A regulator-mediated methylation modification patterns in adrenocortical carcinoma. Oncol Res. 2023;31(5):819-31.
22. Michel M, Kaps L, Maderer A, Galle PR, Moehler M. The Role of p53 Dysfunction in Colorectal Cancer and Its Implication for Therapy. Cancers. 2021;13(10).
23. Flynt E, Bisht K, Sridharan V, Ortiz M, Towfic F, Thakurta A. Prognosis, Biology, and Targeting of TP53 Dysregulation in Multiple Myeloma. Cells. 2020;9(2).
24. Liebl MC, Hofmann TG. The Role of p53 Signaling in Colorectal Cancer. Cancers. 2021;13(9).
25. Hameed Y, Ahmad M, Ejaz S, Liang S. Identification of Key Biomarkers for the Future Applications in Diagnostics and Targeted Therapy of Colorectal Cancer. Curr Mol Med. 2022;19(10):1566524023666220819124419.
26. Ozaki T, Nakagawara A. Role of p53 in Cell Death and Human Cancers. Cancers. 2011;3(1):994-1013.
27. Mijit M, Caracciolo V, Melillo A, Amicarelli F, Giordano A. Role of p53 in the Regulation of Cellular Senescence. Biomolecules. 2020;10(3).
28. Usman M, Hameed Y. GNB1, a novel diagnostic and prognostic potential biomarker of head and neck and liver hepatocellular carcinoma. Journal of Cancer Research and Therapeutics. 9000.
29. Eischen CM. Genome Stability Requires p53. Cold Spring Harb Perspect Med. 2016;6(6).
30. Karamat U, Ejaz S, Hameed Y. In Silico-Analysis of the Multi-Omics Data Identified the Ataxia Telangiectasia Mutated Gene as a Potential Biomarker of Breast Invasive Carcinoma. Genet Test Mol Biomarkers. 2021;25(4):263-75.
31. Hernández Borrero LJ, El-Deiry WS. Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochim Biophys Acta Rev Cancer. 2021;1(188556):29.
32. Gu J, Zhou Y, Huang L, Ou W, Wu J, Li S, et al. TP53 mutation is associated with a poor clinical outcome for non-small cell lung cancer: Evidence from a meta-analysis. Mol Clin Oncol. 2016;5(6):705-13.
33. Zhang Z, Hao R, Guo Q, Zhang S, Wang X. TP53 Mutation Infers a Poor Prognosis and Is Correlated to Immunocytes Infiltration in Breast Cancer. Front Cell Dev Biol. 2021;9(759154).
34. Dong Y, Wu X, Xu C, Hameed Y, Abdel-Maksoud MA, Almanaa TN, et al. Prognostic model development and molecular subtypes identification in bladder urothelial cancer by oxidative stress signatures. Aging. 2024;16(3):2591-616.
35. Abdel-Maksoud MA, Ullah S, Nadeem A, Shaikh A, Zia MK, Zakri AM, et al. Unlocking the diagnostic, prognostic roles, and immune implications of BAX gene expression in pan-cancer analysis. Am J Transl Res. 2024;16(1):63-74.
36. Hameed Y. Decoding the significant diagnostic and prognostic importance of maternal embryonic leucine zipper kinase in human cancers through deep integrative analyses. J Cancer Res Ther. 2023;19(7):1852-64.
37. Abdel-Maksoud MA, Ullah S, Nadeem A, Khan QUA, Zia MK, Ali S, et al. PTPN3 in cancer: unveiling its immune-mediated impact on prognosis and dysregulated signaling pathways. Am J Transl Res. 2023;15(11):6464-75.