EXPLORING THE EFFECTIVENESS OF POINT-OF-CARE ULTRASOUND FOR CARDIOVASCULAR DISEASE DIAGNOSIS: AN IN-DEPTH INVESTIGATION

Main Article Content

Sudhair Abbas Bangash
Dr. Anurag Rawat
Misbah Ijaz
Abhisekh Kharel
Bisma Amit Rahim
Dr. E.N.Ganesh

Keywords

POCUS, Cardiovascular, Diagnosis, Analyzes

Abstract

Objective: This article conducts a retrospective, qualitative, and cross-sectional analysis to examine the utility of Point-of-Care Ultrasound (POCUS) in the context of cardiovascular changes, with a particular focus on its role during the COVID-19 pandemic.


Methods: The study relies on a literature review sourced from the Regional Portal of the Virtual Health Library and PubMed. The data collection process involves the assessment of studies showcasing the application of POCUS in identifying cardiovascular changes, particularly in the context of the SARS-CoV-2 virus.


Results: All reviewed studies consistently demonstrate that POCUS can effectively identify cardiovascular changes at an early stage. Its application has proven instrumental in containing SARS-CoV-2 infections during the pandemic. Notably, the majority of articles highlight the usefulness of POCUS in detecting potentially reversible causes of cardiovascular issues. Furthermore, POCUS emerges as a valuable tool in aiding medical decisions for critically ill patients in emergency and intensive care settings.


Conclusion: The findings underscore the essential role of bedside ultrasound, specifically POCUS, as a diagnostic tool for cardiovascular diseases, even amidst the challenges posed by the COVID-19 pandemic. Its use enables swift and accurate diagnoses of potentially reversible pathologies, offering an active and non-invasive diagnostic test for emergency and intensive care scenarios.

Abstract 315 | Pdf Downloads 87

References

1. Almeida, A. G., Grapsa, J., Gemelli, A., Bucciarelli-Ducci, C., Gerber, B., Ajmone-Marsan, N., . . . Haugaa, K. H. (2024). Cardiovascular multimodality imaging in women. A scientific statement of the European Association of Cardiovascular Imaging (EACVI) of the ESC. European Heart Journal-Cardiovascular Imaging, jeae013.
2. Cai, M., Lv, A., Zhao, W., Xu, L., Lin, N., & Huang, H. (2024). Intrauterine ultrasound phenotyping, molecular characteristics, and postnatal follow-up of fetuses with the 15q11. 2 BP1-BP2 microdeletion syndrome: a single-center, retrospective clinical study. BMC Pregnancy and Childbirth, 24(1), 1-8.
3. Cavero-Redondo, I., Saz-Lara, A., Martínez-García, I., Otero-Luis, I., & Martínez-Rodrigo, A. (2024). Validation of an early vascular aging construct model for comprehensive cardiovascular risk assessment using external risk indicators for improved clinical utility: data from the EVasCu study. Cardiovascular Diabetology, 23(1), 1-17.
4. Cipriani, C., Pepe, J., Colangelo, L., Cilli, M., Nieddu, L., & Minisola, S. (2024). Presentation of hypoparathyroidism in Italy: a nationwide register-based study. Journal of Endocrinological Investigation, 1-7.
5. Defrançais, I., Mansour, A., & Bressollette, L. (2024). Ultrasound Vector Flow Imaging, a Promising Technique towards a New Carotid Atheroma Risk Stratification Non-Invasive Health Systems based on Advanced Biomedical Signal and Image Processing (pp. 145-171): CRC Press.
6. Ejaz, H., Thyyib, T., Ibrahim, A., Nishat, A., & Malay, J. (2024). Role of artificial intelligence in early detection of congenital heart diseases in neonates. Frontiers in Digital Health, 5, 1345814.
7. Feng, T., Guo, Z., Su, H., Zhang, F., Zhu, H., Wang, A., . . . Li, B. (2024). Progress in the Use of Echocardiography in Patients with Tumors. Reviews in Cardiovascular Medicine, 25(1), 22.
8. Gargani, L. (2024). Lung ultrasound in emergency cardiac care Emergency Echocardiography (pp. 259-267): CRC Press.
9. Gorgone, M., Bartholow, T., & Maximous, S. I. (2024). Dynamic Changes in Clinical Status: The Importance of Reassessment with Point-of-Care Ultrasound. Annals of the American Thoracic Society, 21(1), 158-164.
10. Grenar, P., Nový, J., Mědílek, K., & Jakl, M. (2024). Point-of-Care Cardiac Ultrasound Training Programme: Experience from the University Hospital Hradec Králové. Emergency Medicine International, 2024.
11. Gudigar, A., Kadri, N. A., Raghavendra, U., Samanth, J., Inamdar, M. A., Prabhu, M. A., & Acharya, U. R. (2024). Directional-Guided Motion Sensitive Descriptor for Automated Detection of Hypertension Using Ultrasound Images. IEEE Access.
12. Hou, C., Li, S., Zheng, S., Liu, L.-P., Nie, F., Zhang, W., & He, W. (2024). Quality assessment of radiomics models in carotid plaque: a systematic review. Quantitative Imaging in Medicine and Surgery, 14(1), 1141.
13. Huang, W., Liu, Y., Wang, Q., Jin, H., Tang, Y., Wang, J., . . . Tang, L. (2024). Diagnostic Performance of Target-position Murray Law based Quantitative Flow Ratio (target-μFR) vs Vessel-μFR in Patients with stable Coronary Artery Disease.
14. Jin, Y.-B., Kim, J.-H., Song, C.-H., Park, C., & Kang, C.-K. (2024). Diagnostic Ultrasound-Based Investigation of Central vs. Peripheral Arterial Changes Consequent to Low-Dose Caffeine Ingestion. Nutrients, 16(2), 228.
15. Jobling, R., Stanley, K., Kalbfleisch, K., Moran, O., Chaturvedi, R., Roifman, M., . . . McNiven, V. (2024). Expanding the phenotypic spectrum of NOTCH1 variants: Clinical manifestations in families with congenital heart disease.
16. Kaffas, A. E., Vo-Phamhi, J. M., Griffin IV, J. F., & Hoyt, K. (2024). Critical Advances for Democratizing Ultrasound Diagnostics in Human and Veterinary Medicine. Annual Review of Biomedical Engineering, 26.
17. Karthikeyan, N. (2024). A novel attention-based cross-modal transfer learning framework for predicting cardiovascular disease. Computers in Biology and Medicine, 107977.
18. Kumar, P., & Kumar, A. (2024). Heart Disease Binary and Multiclass Classification Using Deep Learning Hybridized with Ensemble Learner. International Journal of Intelligent Engineering & Systems, 17(1).
19. Lee, H. S., Park, J. H., & Lee, S. J. (2024). Artificial intelligence-based speckle featurization and localization for ultrasound speckle tracking velocimetry. Ultrasonics, 107241.
20. Lindor, R. A., Heller, K., Hodgson, N. R., Kishi, P., Monas, J., Rappaport, D., . . . Majdalany, D. S. (2024). Adult Congenital Heart Disease in the Emergency Department. Journal of Personalized Medicine, 14(1), 66.
21. Liu, F.-J., Chen, Q., & Cheng, Y. (2024). Noninvasive carotid ultrasound for predicting vulnerable coronary artery plaques based on optical coherence tomography images. Quantitative Imaging in Medicine and Surgery, 14(1), 316.
22. Montelaro, B. M., Ibrahim, R., Thames, M., & Mehta, P. K. (2024). Optimal Medical Therapy for Stable Ischemic Heart Disease: Focus on Anti-anginal Therapy. Medical Clinics.
23. Pachiyannan, P., Alsulami, M., Alsadie, D., Saudagar, A. K. J., AlKhathami, M., & Poonia, R. C. (2024). A Novel Machine Learning-Based Prediction Method for Early Detection and Diagnosis of Congenital Heart Disease Using ECG Signal Processing. Technologies, 12(1), 4.
24. Pakhare, M., & Anjankar, A. (2024). Critical Correlation Between Obesity and Cardiovascular Diseases and Recent Advancements in Obesity. Cureus, 16(1).
25. Parashar, G., Chaudhary, A., & Pandey, D. (2024). Machine Learning for Prediction of Cardiovascular Disease and Respiratory Disease: A Review. SN Computer Science, 5(1), 196.
26. Santos-Moreno, P., Linares-Contreras, M. F., Rodríguez-Vargas, G.-S., Rodríguez-Linares, P., Mata-Hurtado, A., Ibatá, L., . . . Vicente-Rabaneda, E. F. (2024). Usefulness of Lung Ultrasound as a Method for Early Diagnosis of Interstitial Lung Disease in Patients with Rheumatoid Arthritis. Open Access Rheumatology: Research and Reviews, 9-20.
27. Scafa Udriște, A., Burdușel, A. C., Niculescu, A.-G., Rădulescu, M., & Grumezescu, A. M. (2024). Metal-Based Nanoparticles for Cardiovascular Diseases. International Journal of Molecular Sciences, 25(2), 1001.
28. Serai, S. D., Franchi-Abella, S., Syed, A. B., Tkach, J. A., Toso, S., & Ferraioli, G. (2024). MR and Ultrasound Elastography for Fibrosis Assessment in Children: Practical Implementation and Supporting Evidence—AJR Expert Panel Narrative Review. American Journal of Roentgenology.
29. Sing, C. (2024). Check for Cardiovascular Disease in Pregnancy Cindy Sing and Malissa J. Wood. Cardiovascular Manual for the Advanced Practice Provider: Mastering the Basics, 359.
30. Stankovic, I., & Cardim, N. (2024). Handheld ultrasound devices in the emergency setting Emergency Echocardiography (pp. 232-243): CRC Press.
31. Suriani, I., Bouwman, R. A., Mischi, M., & Lau, K. D. (2024). An in-silico study of the effects of cardiovascular ageing on carotid flow waveforms and indices in a virtual population. American Journal of Physiology-Heart and Circulatory Physiology.
32. Suvankulovich, A. K., & Zafarjonovich, R. F. (2024). USING ULTRASOUND STUDIES TO ASSESS OBESITY AS A RISK FACTOR FOR CARDIOVASCULAR DISEASE. Journal of Universal Science Research, 2(1), 23-30.
33. Tang, C., Shi, F., Ji, Y., Zhu, J., & Gu, X. (2024). Aldehyde Dehydrogenase 2 (ALDH2) rs671 Polymorphism is a Predictor of Pulmonary Hypertension Due to Left Heart Disease. Heart, Lung and Circulation.
34. Teira Calderón, A., Levine, M., Ruisánchez, C., Serrano, D., Catoya, S., Llano, M., . . . González Vilchez, F. (2024). Clinical comparison of a handheld cardiac ultrasound device for the assessment of left ventricular function. The International Journal of Cardiovascular Imaging, 40(1), 55-64.
35. Yang, Y., Liang, X., Luo, H., Cheng, Y.-x., Guo, Y., Wu, P., . . . Wang, Z. (2024). Assessment of aortic and peripheral arterial stiffness in patients with knee osteoarthritis by ultrasound Doppler derived pulse wave velocity. Scientific Reports, 14(1), 1346.
36. Zhang, S.-j., He, S.-z., Wu, J.-j., Chen, Y.-j., & Lyu, G.-r. (2024). Evaluation of extravascular lung water and cardiac function in expected vaginal delivery by intrapartum bedside ultrasound. BMC Pregnancy and Childbirth, 24(1), 13.
37. Zhao, Z., Mi, Y., Ur Rehman, H., Sun, E., Cao, X., & Wang, N. (2024). From Body Monitoring to Biomolecular Sensing: Current Progress and Future Perspectives of Triboelectric Nanogenerators in Point-of-Care Diagnostics. Sensors, 24(2), 511.

Most read articles by the same author(s)

1 2 > >>