Main Article Content

Taj Muhammad
Aamir Aziz
Awais Khalid
Bader S. Alotaibi
Nain Taara Bukhari
Iqbal Nisa
Fawad Khan
Nabila Qayum
Yosra Modafer
Farah Shireen
Muhammad Saqib Khalil


Phytosynthesis, A. modesta Wall, Characterization, AuNPs, Antimicrobial, Antileshmanial, Cytotoxic


Aqueous leaves extracts of Acacia modesta Wall. was utilized to phyto-synthesize green AuNPs. The leaves of A. modesta were investigated to possess potential phytochemicals such as alkaloids, flavonoids, polyphenols, reducing sugars, tannins, saponins and steroids, which help in the bioconversion of Au+3 to Auo. The synthesized AuNPs were analyzed to be stable nano-crystalline spherical, having a size span of 20 – 100 nm. The λmax peak for AuNPs was observed at 550 nm, which manifests the precise fabrication of AuNPs. The sharp Auo peak, along with other organic elements, i.e., C, N, O, Ca++, Mg++, Na+ and Cl- at variable intensities in EDX analysis, manifest phytochemicals in plant extracts have effectively reduced the ionic Au by acting as efficient biocapping and bioreducing agent. The pharmacological activities of these AuNPs in comparison to aqueous leaves extract manifest that AuNPs possess excellent antifungal activity against F. solani (92%), F. oxysporum (91%), M. fur fur (90%), Penecillium and C. albicans (89%). Moderate to good antibacterial activity was analyzed against S. aureus (62%) and K. pnuemoniae (53%). Less cytotoxic activity was observed against brine shrimp nauplii i.e. 6.67% at higest sample concentration i.e. 1000 µg/mL. Good anti-leshmanial activity was manifested by green AuNPs against L. major, showing IC50 value of 50.2 + 0.01 respectively.

Abstract 409 | pdf Downloads 212


1. Ahmad, A., Syed, F., Shah, A., Khan, Z., Tahir, K., Khan, A. U., & Yuan, Q. (2015). Silver and gold nanoparticles from Sargentodoxa cuneata: synthesis, characterization and antileishmanial activity. Rsc Advances, 5(90), 73793-73806.
2. Ahmad, S., Ullah, F., Sadiq, A., Ayaz, M., Imran, M., Ali, I., Zeb, A., Ullah, F., & Shah, M. R. (2016). Chemical composition, antioxidant and anticholinesterase potentials of essential oil of Rumex hastatus D. Don collected from the North West of Pakistan. BMC complementary and alternative medicine, 16, 1-11.
3. Alahmad, A. (2022). Green synthesis, characterization and biofunctionalisation of nanoparticles for medical applications.
4. Amina, S. J., Iqbal, M., Faisal, A., Shoaib, Z., Niazi, M. B. K., Ahmad, N. M., Khalid, N., & Janjua, H. A. (2021). Synthesis of diosgenin conjugated gold nanoparticles using algal extract of Dictyosphaerium sp. and in-vitro application of their antiproliferative activities. Materials Today Communications, 27, 102360.
5. Arora, H., Doty, C., Yuan, Y., Boyle, J., Petras, K., Rabatic, B., Paunesku, T., & Woloschak, G. (2010). Titanium dioxide nanocomposites. Nanomaterials for Life Sciences; Kumar, CSSR, Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, German, 8.
6. Atiya, A., Majrashi, T., Akhtar, S., Khan, A. A., Asiri, A. M. S., Al-Zahrania, H. J., Alnami, R. S., Alsharif, S. A., Amer, T., & Faiz, Z. A. (2022). The value of Genus Acacia in arid and semi-arid environments for the treatment of chronic inflammatory diseases. Phytomedicine Plus, 100315.
7. Babbar, A., Sharma, A., Jain, V., & Gupta, D. (2022). Additive Manufacturing Processes in Biomedical Engineering: Advanced Fabrication Methods and Rapid Tooling Techniques. CRC Press.
8. Chaachouay, N., Benkhnigue, O., & Zidane, L. (2022). Ethnobotanical and Ethnomedicinal study of medicinal and aromatic plants used against dermatological diseases by the people of Rif, Morocco. Journal of Herbal Medicine, 32, 100542.
9. Dappula, S. S., Kandrakonda, Y. R., Shaik, J. B., Mothukuru, S. L., Lebaka, V. R., Mannarapu, M., & Amooru, G. D. (2023). Biosynthesis of zinc oxide nanoparticles using aqueous extract of Andrographis alata: Characterization, optimization and assessment of their antibacterial, antioxidant, antidiabetic and anti-Alzheimer's properties. Journal of Molecular Structure, 1273, 134264.
10. DESHPANDE, R. This work is dedicated to my beloved Grand-father.
11. Eckelman, M. J., Zimmerman, J. B., & Anastas, P. T. (2008). Toward green nano: E‐factor analysis of several nanomaterial syntheses. Journal of Industrial Ecology, 12(3), 316-328.
12. Gour, A., & Jain, N. K. (2019). Advances in green synthesis of nanoparticles. Artificial cells, nanomedicine, and biotechnology, 47(1), 844-851.
13. Husen, A., Rahman, Q. I., Iqbal, M., Yassin, M. O., & Bachheti, R. K. (2019). Plant-mediated fabrication of gold nanoparticles and their applications. Nanomaterials and plant potential, 71-110.
14. Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian journal of chemistry, 12(7), 908-931.
15. Khanna, P., Kaur, A., & Goyal, D. (2019). Algae-based metallic nanoparticles: Synthesis, characterization and applications. Journal of microbiological methods, 163, 105656.
16. Krishnani, K. K., Boddu, V. M., Chadha, N. K., Chakraborty, P., Kumar, J., Krishna, G., & Pathak, H. (2022). Metallic and non-metallic nanoparticles from plant, animal, and fisheries wastes: potential and valorization for application in agriculture. Environmental Science and Pollution Research, 29(54), 81130-81165.
17. Kumar, C. G., Pombala, S., Poornachandra, Y., & Agarwal, S. V. (2016). Synthesis, characterization, and applications of nanobiomaterials for antimicrobial therapy. In Nanobiomaterials in antimicrobial therapy (pp. 103-152). Elsevier.
18. Kumar, K. S., Bhowmik, D., Dutta, A., Yadav, A. P., Paswan, S., Srivastava, S., & Deb, L. (2012). Recent trends in potential traditional Indian herbs Emblica officinalis and its medicinal importance. Journal of Pharmacognosy and Phytochemistry, 1(1), 24-32.
19. Labiad, H., Et-tahir, A., Ghanmi, M., Satrani, B., Aljaiyash, A., Chaouch, A., & Fadli, M. (2020). Ethnopharmacological survey of aromatic and medicinal plants of the pharmacopoeia of northern Morocco. Ethnobotany Research and Applications, 19, 1-16.
20. Lakshmibai, R., Amirtham, D., & Radhika, S. (2015). Preliminary phytochemical analysis and antioxidant activities of Prosopis juliflora and Mimosa pudica leaves. Int J Sci Eng Technol Res, 4(30), 5766-5770.
21. Lee, Y.-C., & Moon, J.-Y. (2020). Introduction to nanotechnology and bionanotechnology. Introduction to bionanotechnology, 1-14.
22. Madkour, L. H. (2019). Nanoelectronic materials: fundamentals and applications (Vol. 116). Springer.
23. Mahakham, W., Theerakulpisut, P., Maensiri, S., Phumying, S., & Sarmah, A. K. (2016). Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Science of the Total Environment, 573, 1089-1102.
24. Marzi, M., Osanloo, M., Vakil, M. K., Mansoori, Y., Ghasemian, A., Dehghan, A., & Zarenezhad, E. (2022). Applications of Metallic Nanoparticles in the Skin Cancer Treatment. BioMed Research International, 2022.
25. Munir, S., Rasheed, A., Zulfiqar, S., Aadil, M., Agboola, P. O., Shakir, I., & Warsi, M. F. (2020). Synthesis, characterization and photocatalytic parameters investigation of a new CuFe2O4/Bi2O3 nanocomposite. Ceramics International, 46(18), 29182-29190.
26. Prasad, R. D., Charmode, N., Shrivastav, O. P., Prasad, S. R., Moghe, A., Sarvalkar, P. D., & Prasad, N. R. (2021). A review on concept of nanotechnology in veterinary medicine. ES Food & Agroforestry, 4, 28-60.
27. Qadri, M. M. A. (2012). TERRORISM: A SERIOUS THREAT TO TRANSNATIONAL RELATIONS THEORY AND PRACTICE: A CASE STUDY OF PAKISTAN. Journal of Social Sciences and Humanities, 51(2), 289-297.
28. Santhosh, P. B., Genova, J., & Chamati, H. (2022). Green synthesis of gold nanoparticles: An eco-friendly approach. Chemistry, 4(2), 345-369.
29. Saraswat, S. (2022). Application of Nano-biotechnology in Wastewater Treatment: An Overview. Nano-biotechnology for Waste Water Treatment: Theory and Practices, 41-75.
30. Siddiqi, K. S., Husen, A., & Rao, R. A. (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of nanobiotechnology, 16(1), 1-28.
31. Singh, R., Nawale, L. U., Arkile, M., Shedbalkar, U. U., Wadhwani, S. A., Sarkar, D., & Chopade, B. A. (2015). Chemical and biological metal nanoparticles as antimycobacterial agents: a comparative study. International journal of antimicrobial agents, 46(2), 183-188.
32. Su, C. (2017). Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: A review of recent literature. Journal of hazardous materials, 322, 48-84.
33. Unterlass, M. M. (2016). Green synthesis of inorganic–organic hybrid materials: State of the art and future perspectives. European Journal of Inorganic Chemistry, 2016(8), 1135-1156.
34. Yadav, S., Yashas, S. R., & Shivaraju, H. P. (2021). Transitional metal chalcogenide nanostructures for remediation and energy: a review. Environmental Chemistry Letters, 19(5), 3683-3700.
35. Yadav, S. P. S., Ghimire, N. P., & Yadav, B. (2021). Assessment of nano-derived particles, devices, and systems in animal science: a review. Nanotechnology in Agriculture, 2(1).
36. Zayadi, R. A., & Bakar, F. A. (2020). Comparative study on stability, antioxidant and catalytic activities of bio-stabilized colloidal gold nanoparticles using microalgae and cyanobacteria. Journal of Environmental Chemical Engineering, 8(4), 103843.

Most read articles by the same author(s)

1 2 > >>