HARNESSING CRISPR-CAS TECHNOLOGIES FOR PAEDIATRIC IMMUNODEFICIENCIES: A NEW FRONTIER

Main Article Content

Humera Khatoon
Javeria Javed
Sana Waqar
Farah Owais
Shomaiza Andleeb
Javeria Khan
Maham Siddiqui
Rida Islam
Syed Fozail Sarmad
Wajeeha Ishrat

Keywords

CRISPER-Cas, Genetic defect, Paediatric, Immunodeficiencies

Abstract

Aim: This research examines the safety and effectiveness of CRISPR-Cas technologies in correcting genetic defects and restoring immunological function.


Method: This study reviewed CRISPR-Cas research on treating paediatric immunodeficiencies using PRISMA criteria.


Databases: The searches conducted in PubMed, Web of Science, and Embase primarily focused on scholarly papers published in English


Findings: Five of seventeen papers matched the requirements for more complete research after a thorough examination. Numerous studies have demonstrated that CRISPR-Cas may correct genetic abnormalities in SCID and Wiskott - Aldrich syndrome. Thus, animal models have showed considerable immune function improvements and disease amelioration. Due to a lack of clinical application data, laboratory results differ from paediatric patient outcomes.


Conclusion: In conclusion, CRISPR-Cas technology allows precise genetic changes, promising therapy for paediatric immunodeficiencies. Despite promising preclinical results, longer-term clinical trials are needed to determine safety and effectiveness. To maximise the utility of CRISPR-Cas for paediatric immunodeficiency therapies, laboratory discoveries must be translated into clinical practice.

Abstract 52 | PDF Downloads 37

References

1. Baddeley, H. J., and Isalan, M. (2021). The application of CRISPR/Cas systems for antiviral therapy. Frontiers in Genome Editing, 3, 745559.
2. Bhokisham, N., Laudermilch, E., Traeger, L. L., Bonilla, T. D., Ruiz-Estevez, M., and Becker, J. R. (2023). CRISPR-Cas system: the current and emerging translational landscape. Cells, 12(8), 1103.
3. Braff, D., Shis, D., and Collins, J. J. (2016). Synthetic biology platform technologies for antimicrobial applications. Advanced drug delivery reviews, 105, 35-43.
4. De Ravin, S. S., and Brault, J. (2019). CRISPR/Cas9 applications in gene therapy for primary immunodeficiency diseases. Emerging Topics in Life Sciences, 3(3), 277-287.
5. Fernández-Calleja, V., Fernández-Nestosa, M. J., Hernández, P., Schvartzman, J. B., and Krimer, D. B. (2019). CRISPR/Cas9-mediated deletion of the Wiskott-Aldrich syndrome locus causes actin cytoskeleton disorganization in murine erythroleukemia cells. PeerJ, 7, e6284.
6. Gleerup, J. L., and Mogensen, T. H. (2022). CRISPR-Cas in diagnostics and therapy of infectious diseases. The Journal of Infectious Diseases, 226(11), 1867-1876.
7. Huang, J., Zhou, Y., Li, J., Lu, A., and Liang, C. (2022). CRISPR/Cas systems: Delivery and application in gene therapy. Frontiers in Bioengineering and Biotechnology, 10, 942325.
8. Lagutina, I. V., Valentine, V., Picchione, F., Harwood, F., Valentine, M. B., Villarejo-Balcells, B., ... and Grosveld, G. C. (2015). Modeling of the human alveolar rhabdomyosarcoma Pax3-Foxo1 chromosome translocation in mouse myoblasts using CRISPR-Cas9 nuclease. PLoS genetics, 11(2), e1004951.
9. Lin, H., Li, G., Peng, X., Deng, A., Ye, L., Shi, L., ... and He, J. (2021). The use of CRISPR/Cas9 as a tool to study human infectious viruses. Frontiers in Cellular and Infection Microbiology, 11, 590989.
10. Lin, H., Wang, H., He, J., Peng, X., Deng, A., Shi, L., ... and Gong, H. (2022). CRISPR/Cas9 Technology as a Strategy Against Viral Infections. In CRISPR-/Cas9 Based Genome Editing for Treating Genetic Disorders and Diseases (pp. 132-157). CRC Press.
11. Linares-Espinós, E., Hernández, V., Domínguez-Escrig, J. L., Fernández-Pello, S., Hevia, V., Mayor, J., ... & Ribal, M. J. (2018). Methodology of a systematic review. Actas Urológicas Españolas (English Edition), 42(8), 499-506.
12. Liu, X., Li, G., Liu, Y., Zhou, F., Huang, X., and Li, K. (2023). Advances in CRISPR/Cas gene therapy for inborn errors of immunity. Frontiers in Immunology, 14, 1111777.
13. Mandip, K. C., and Steer, C. J. (2019). A new era of gene editing for the treatment of human diseases. Swiss medical weekly, 149(0304), w20021-w20021.
14. Morshedzadeh, F., Ghanei, M., Lotfi, M., Ghasemi, M., Ahmadi, M., Najari-Hanjani, P., ... & Abbaszadegan, M. R. (2024). An update on the application of CRISPR technology in clinical practice. Molecular Biotechnology, 66(2), 179-197.
15. Naseem, A., Steinberg, Z., and Cavazza, A. (2022). Genome editing for primary immunodeficiencies: A therapeutic perspective on Wiskott-Aldrich syndrome. Frontiers in Immunology, 13, 966084.
16. Newman, M., & Gough, D. (2020). Systematic reviews in educational research: Methodology, perspectives and application. Systematic reviews in educational research: Methodology, perspectives and application, 3-22.
17. Ottaviano, G., Georgiadis, C., Gkazi, S. A., Syed, F., Zhan, H., Etuk, A., ... and TT52 CRISPR-CAR group. (2022). Phase 1 clinical trial of CRISPR-engineered CAR19 universal T cells for treatment of children with refractory B cell leukemia. Science translational medicine, 14(668), eabq3010.
18. Pati, D. and Lorusso, L.N., 2018. How to write a systematic review of the literature. HERD: Health Environments Research & Design Journal, 11(1), pp.15-30.
19. Sarkar, E., and Khan, A. (2021). Erratic journey of CRISPR/Cas9 in oncology from bench-work to successful-clinical therapy. Cancer Treatment and Research Communications, 27, 100289.
20. Seok, H., Deng, R., Cowan, D. B., and Wang, D. Z. (2021). Application of CRISPR-Cas9 gene editing for congenital heart disease. Clinical and experimental pediatrics, 64(6), 269.
21. Serajian, S., Ahmadpour, E., Oliveira, S. M. R., Pereira, M. D. L., and Heidarzadeh, S. (2021). CRISPR-Cas technology: emerging applications in clinical microbiology and infectious diseases. Pharmaceuticals, 14(11), 1171.
22. Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of business research, 104, 333-339.
23. Uddin, F., Rudin, C. M., and Sen, T. (2020). CRISPR gene therapy: applications, limitations, and implications for the future. Frontiers in oncology, 10, 1387.
24. Wagner, D. L., Koehl, U., Chmielewski, M., Scheid, C., and Stripecke, R. (2022). sustainable clinical development of CAR-T cells–switching from viral transduction towards CRISPR-Cas gene editing. Frontiers in immunology, 13, 865424.
25. Wang, G. (2016). New frontiers in cystic fibrosis therapy: the case of stem cells. Clinical Immunology, Endocrine and Metabolic Drugs (Discontinued), 3(2), 162-168.
26. Wanzel, M., Vischedyk, J. B., Gittler, M. P., Gremke, N., Seiz, J. R., Hefter, M., ... and Stiewe, T. (2016). CRISPR-Cas9–based target validation for p53-reactivating model compounds. Nature chemical biology, 12(1), 22-28.
27. Zakiyyah, S. N., Ibrahim, A. U., Babiker, M. S., Gaffar, S., Ozsoz, M., Zein, M. I. H., and Hartati, Y. W. (2022). Detection of tropical diseases caused by mosquitoes using CRISPR-based biosensors. Tropical Medicine and Infectious Disease, 7(10), 309.

Most read articles by the same author(s)