REVOLUTIONIZING THERAPY: EXPLORING THE PROMISING ROLE OF P-BLOCK ELEMENTS IN MEDICINE

Main Article Content

Areeba Sajid
Sidra .
Sadaf Fayyaz
Sibgha Noureen
Musrat Sana
Maham Amjad
Chanda Ashraf
Sadia Munir
Iqra Shahzadi
Sadais Ahmed
Aqsa Ikram

Keywords

P-block Elements, Pharmacological Potential, Anti-cancer activity, Anti-microbial potential, Anti-inflammatory effect

Abstract

P-block elements have a long and varied history from ancient times. In pharmacological therapy, P-block elements might have some advantages over purely organic compounds. Such as dental problems, drug delivery, eye, respiratory, and gastrointestinal diseases. These elements are also used as anti-cancerous drugs, anti-ulcerative drugs, anti-microbial, anti-bacterial, anti-fungal agents, etc. For example, antimony (anti-protozoal), bismuth (anti-ulcer), gold (anti-arthritic), iron (anti-malarial), platinum (anti-cancer), and silver (antimicrobial) compounds in the treatment of various diseases.  This review is the collection of pharmacological and therapeutic advantages of P-block elements. Many different transition metal and main group element compounds have been studied for their potential anti-tumor action. Although P-block elements are widely used to treat a wide range of illnesses, few of them have been scientifically screened out. Even though research into the potency of p-block elements has advanced tremendously, efforts to find newer therapeutic candidates continue. Therefore, research into the untapped potential of p-block elements should be done.

Abstract 141 | pdf Downloads 54

References

1. Sadler PJ. Inorganic chemistry and drug design. Adv Inorg Chem. 36: Elsevier; 1991. p. 1-48.
2. Mjos KD, Orvig C. Metallodrugs in medicinal inorganic chemistry. Chem Rev. 2014;114(8):4540-63.
3. Gaynor D, Griffith DM. The prevalence of metal-based drugs as therapeutic or diagnostic agents: beyond platinum. Dalton Trans. 2012;41(43):13239-57.
4. Orvig C, Abrams MJ. Medicinal inorganic chemistry: introduction. Chem Rev. 1999;99(9):2201-4.
5. Priegert AM, Rawe BW, Serin SC, Gates DP. Polymers and the p-block elements. Chem Soc Rev. 2016;45(4):922-53.
6. Mendes RF, Figueira F, Leite JP, Gales L, Paz FAA. Metal–organic frameworks: a future toolbox for biomedicine? Chem Soc Rev. 2020;49(24):9121-53.
7. Desoize B. Metals and metal compounds in cancer treatment. Anticancer Res. 2004;24(3A):1529-44.
8. Gielen M. Metal-based anti-tumour drugs: Freund Publishing House; 1988.
9. Keppler BK. Metal complexes in cancer chemotherapy. (No Title). 1993.
10. Adelstein SJ, Manning FJ. Isotopes for medicine and the life sciences: National Academies Press; 1995.
11. Evelyn KA. Medical applications of artificial radioactive isotopes. Can Med Assoc J. 1947;56(5):547.
12. Stöcklin G, Qaim S, Rösch F. The impact of radioactivity on medicine metallic. Radiochimca Acta. 1995;70(Supplement):249-72.
13. Hamilton JG. The use of radioactive tracers in biology and medicine. Radiology. 1942;39(5):541-72.
14. Doniach I. Medical applications of radio-active iodine. Postgrad Med J. 1948;24(272):325.
15. Brücken A, Cizen A, Fera C, Meinhardt A, Weis J, Nolte K, et al. Argon reduces neurohistopathological damage and preserves functional recovery after cardiac arrest in rats. Br J Anaesth. 2013;110(suppl_1):i106-i12.
16. Irani Y, Pype J, Martin A, Chong C, Daniel L, Gaudart J, et al. Noble gas (argon and xenon)-saturated cold storage solutions reduce ischemia-reperfusion injury in a rat model of renal transplantation. Nephron Extra. 2011;1(1):272-82.
17. Ryang Y-M, Fahlenkamp AV, Rossaint R, Wesp D, Loetscher PD, Beyer C, et al. Neuroprotective effects of argon in an in vivo model of transient middle cerebral artery occlusion in rats. Crit Care Med. 2011;39(6):1448-53.
18. Kumar N. Study of Physical and Atomic Properties of Noble Gases.
19. Roqaiya M, Begum W. A review on medicinal aspect of alum in Unani medicine and scientific studies. World J Pharm Res. 2015;4(6):929-40.
20. Kabeeruddin M. Ilmul advia nafeesi. New Delhi (India): Aijaz Publication. 2007;281.
21. Ali A. Kitabul Mukhtarat fit Tibb. Central Council for Research in Unani Medicine, New Delhi. 2005.
22. Grieve M. A modern herbal: Courier Corporation; 2013.
23. Mufradat KMM. Ejaz Publications House. New Delhi. 2007;141(142):556.
24. Simmonite WJ. Medical Botany, Or, Herbal Guide to Health: Explaining the Natural Pathology of Disease, with Hundreds of Herbal Recipes, Thus Making Every Man His Own Physician: W. Foulsham & Company; 1870.
25. Schiller L. anti‐diarrhoeal pharmacology and therapeutics. Aliment Pharmacol Ther. 1995;9(2):86-106.
26. Osuala F, Ibidapo-obe M, Okoh H, Aina O, Igbasi U, Nshiogu M, et al. Evaluation of the efficacy and safety of Potassium Aluminium Tetraoxosulphate (Vi)(ALUM) in the Treatment of tuberculosis. Eur J Biolo Scie. 2009;1(1):10-5.
27. Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, et al. Drug delivery systems: An updated review. Int J Pharm Investig. 2012;2(1):2.
28. Bradbury J. Beyond pills and jabs. The Lancet. 2003;362(9400):1984-5.
29. Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Cancer Nanotechnol. 2017:47-98.
30. Becker S, Soukup J, Gallagher J. Differential particulate air pollution induced oxidant stress in human granulocytes, monocytes and alveolar macrophages. Toxicol In Vitro. 2002;16(3):209-18.
31. Rehman M, Madni A, Webster TJ. The era of biofunctional biomaterials in orthopedics: what does the future hold? Expert Rev Med Devices. 2018;15(3):193-204.
32. Salata OV. Applications of nanoparticles in biology and medicine. Journal of nanobiotechnology. 2004;2(1):1-6.
33. Nikolova MP, Chavali MS. Metal oxide nanoparticles as biomedical materials. Biomimetics. 2020;5(2):27.
34. JW T. Drugs used in the chemotherapy of protozoal infections. Goodman and Gilman's the pharmacological basis of therapeutics. 1996:965-85.
35. Berman JD. Chemotherapy for leishmaniasis: biochemical mechanisms, clinical efficacy, and future strategies. Rev Infect Dis. 1988;10(3):560-86.
36. Tiekink ER. Antimony and bismuth compounds in oncology. Crit Rev Oncol Hematol. 2002;42(3):217-24.
37. Guo Z, Sadler PJ. Metals in medicine. Angewandte Chemie International Edition. 1999;38(11):1512-31.
38. Polychronis N, Banti C, Raptopoulou C, Psycharis V, Kourkoumelis N, Hadjikakou S. Non steroidal anti-inflammatory drug (NSAIDs) in breast cancer chemotherapy; antimony (V) salicylate a DNA binder. Inorganica Chimica Acta. 2019;489:39-47.
39. Cathey HM. Physiology of growth retarding chemicals. Annual review of plant physiology. 1964;15(1):271-302.
40. Sun H, Li H, Sadler PJ. The biological and medicinal chemistry of bismuth. Chem Ber. 1997;130(6):669-81.
41. Sadler PJ, Li H, Sun H. Coordination chemistry of metals in medicine: target sites for bismuth. Coord Chem Rev. 1999;185:689-709.
42. Andrews PC, Deacon GB, Forsyth CM, Junk PC, Kumar I, Maguire M. Towards a structural understanding of the anti‐ulcer and anti‐gastritis drug bismuth subsalicylate. Angewandte Chemie. 2006;118(34):5766-70.
43. Mendis AH, Marshall BJ. Helicobacter pylori and bismuth. Biological Chemistry of Arsenic, Antimony and Bismuth: John Wiley & Sons, Ltd. 2010:241-62.
44. DiVall MV, Ziegler KA. Pharmacologic Agents. Acute Care Handbook for Physical Therapists. 2013:409.
45. Skinner S, Swatzell J, Lewis R. Anti leukemia activity (Dunning ascitic) of 6-mercaptopurine and its metallo complexes in rats. Res Commun Chem Pathol Pharmacol. 1978;19(1):165-8.
46. Skinner S, Lewis R. Anti leukemia activity (L1210) of 6-mercaptopurine and its metallo complexes in mice. Res Commun Chem Pathol Pharmacol. 1977;16(1):183-6.
47. Smith SM, Haider RB, O’Connor H, McNamara D, O’Morain C. Practical treatment of Helicobacter pylori: a balanced view in changing times. Eur J Gastroenterol Hepatol. 2014;26(8):819-25.
48. Su P, Li Y, Li H, Zhang J, Lin L, Wang Q, et al. Antibiotic resistance of Helicobacter pylori isolated in the Southeast Coastal Region of China. Helicobacter. 2013;18(4):274-9.
49. Megraud F, Coenen S, Versporten A, Kist M, Lopez-Brea M, Hirschl AM, et al. Helicobacter pylori resistance to antibiotics in Europe and its relationship to antibiotic consumption. Gut. 2013;62(1):34-42.
50. Gisbert JP. A new, single-capsule bismuth-containing quadruple therapy. Nature Reviews Gastroenterology & Hepatology. 2011;8(6):307-9.
51. Agocs LL. Design of bioactive chalcogenobismuth (III) heterocycles. 1997.
52. Li H, Wang R, Sun H. Systems approaches for unveiling the mechanism of action of bismuth drugs: new medicinal applications beyond Helicobacter pylori infection. Acc Chem Res. 2018;52(1):216-27.
53. Keogan DM, Griffith DM. Current and potential applications of bismuth-based drugs. Molecules. 2014;19(9):15258-97.
54. Scarpignato C, Pelosini I. Bismuth compounds for eradication of Helicobacter pylori: pharmacology and safety. Clinical Pharmacology and Therapy of Helicobacter pylori Infection. 11: Karger Publishers; 1999. p. 87-127.
55. Soriano-Brücher H, Avendano P, O'Ryan M, Soriano HA, Braun SD, Manhart MD, et al. Bismuth subsalicylate in the treatment of acute diarrhea in children: a clinical study. Pediatrics. 1991;87(1):18-27.
56. Cornick NA, Silva M, Gorbach SL. In vitro antibacterial activity of bismuth subsalicylate. Rev Infect Dis. 1990;12(Supplement_1):S9-S10.
57. Chang T-W, Dong M-Y, Gorbach SL. Effect of bismuth subsalicylate on Clostridium difficile colitis in hamsters. Rev Infect Dis. 1990;12(Supplement_1):S57-S8.
58. Gilinsky N, Burns D, Barbezat G, Levin W, Myers H, Marks I. The natural history of radiation-induced proctosigmoiditis: an analysis of 88 patients. QJM: An International Journal of Medicine. 1983;52(1):40-53.
59. Russell JC, Welch JP. Operative management of radiation injuries of the intestinal tract. The American Journal of Surgery. 1979;137(4):433-42.
60. Greven KM, Lanciano RM, Herbert SH, Hogan PE. Analysis of complications in patients with endometrial carcinoma receiving adjuvant irradiation. International Journal of Radiation Oncology* Biology* Physics. 1991;21(4):919-23.
61. Cochrane JP, Yarnold JR, Slack WW. The surgical treatment of radiation injuries after radiotherapy for uterine carcinoma. Journal of British Surgery. 1981;68(1):25-8.
62. Hunter J, Burt R, Becker J, Lee R, Dixon J. Colonic mucosal lesions: evaluation of monopolar electrocautery, argon laser, and neodymium: YAG laser. Curr Surg. 1984;41(5):373-5.
63. Tan R, Chung C-H, Liu M-T, Lai Y-L, Chang K-H. Radiotherapy for postoperative recurrent uterine cervical carcinoma. Acta Oncol. 1991;30(3):353-6.
64. Rauthe G. Management of reactions and complications following radiation therapy. Radiation oncology of gynecological cancers: Springer; 1997. p. 433-54.
65. Galland R, Spencer J. The natural history of clinically established radiation enteritis. The Lancet. 1985;325(8440):1257-8.
66. Apfelberg DB, Maser MR, Dds HL, White D, Weston J. Preliminary results of argon and carbon dioxide laser treatment of keloid scars. Lasers Surg Med. 1984;4(3):283-90.
67. Bailin P. Use of the CO2 laser for non-PWS cutaneous lesions. Cutaneous Laser Therapy: Principles and Methods New York: John Wiley. 1983:187-200.
68. Spaggiari S, Kepp O, Rello-Varona S, Chaba K, Adjemian S, Pype J, et al. Antiapoptotic activity of argon and xenon. Cell cycle. 2013;12(16):2636-42.
69. Wolf P, Brischwein M, Kleinhans R, Demmel F, Schwarzenberger T, Pfister C, et al. Automated platform for sensor-based monitoring and controlled assays of living cells and tissues. Biosens Bioelectron. 2013;50:111-7.
70. Rasbridge S, Gillett C, Seymour A, Patel K, Richards M, Rubens R, et al. The effects of chemotherapy on morphology, cellular proliferation, apoptosis and oncoprotein expression in primary breast carcinoma. Br J Cancer. 1994;70(2):335-41.
71. Slater E. The mechanism of action of the respiratory inhibitor, antimycin. Biochimica et Biophysica Acta (BBA)-Reviews on Bioenergetics. 1973;301(2):129-54.
72. Marchetti P, Susin SA, Decaudin D, Gamen S, Castedo M, Hirsch T, et al. Apoptosis-associated derangement of mitochondrial function in cells lacking mitochondrial DNA. Cancer Res. 1996;56(9):2033-8.
73. Russo R, Berliocchi L, Adornetto A, Amantea D, Nucci C, Tassorelli C, et al. In search of new targets for retinal neuroprotection: is there a role for autophagy? Curr Opin Pharmacol. 2013;13(1):72-7.
74. Zhang M, An C, Gao Y, Leak RK, Chen J, Zhang F. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog Neurobiol. 2013;100:30-47.
75. Neal JW, Gasque P. How does the brain limit the severity of inflammation and tissue injury during bacterial meningitis? J Neuropathol Exp Neurol. 2013;72(5):370-85.
76. Durukan A, Tatlisumak T. Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacology Biochemistry and Behavior. 2007;87(1):179-97.
77. Watabe T, Hosono M, Kinuya S, Yamada T, Yanagida S, Namba M, et al. Manual on the proper use of sodium astatide ([211At] NaAt) injections in clinical trials for targeted alpha therapy. Ann Nucl Med. 2021;35(7):753-66.
78. Shirakami Y, Watabe T, Obata H, Kaneda K, Ooe K, Liu Y, et al. Synthesis of [211At] 4-astato-L-phenylalanine by dihydroxyboryl-astatine substitution reaction in aqueous solution. Sci Rep. 2021;11(1):12982.
79. Kaneda‐Nakashima K, Zhang Z, Manabe Y, Shimoyama A, Kabayama K, Watabe T, et al. α‐Emitting cancer therapy using 211At‐AAMT targeting LAT1. Cancer Sci. 2021;112(3):1132-40.
80. MJ ON, Heckelman P, Koch C, Roman K. The Merck Index, An Encyclopedia of Chemicals, Drugs and Biologicals. Merck and Co Inc Whitehouse station, NJ. 2001:218.
81. Soine TO, Wilson CO. Rogers' Inorganic Pharmaceutical Chemistry. Acad Med. 1962;37(1):80-1.
82. Zbacnik TJ, Holcomb RE, Katayama DS, Murphy BM, Payne RW, Coccaro RC, et al. Role of buffers in protein formulations. J Pharm Sci. 2017;106(3):713-33.
83. Van Slyke KK, Michel VP, Rein MF. Treatment of vulvovaginal candidiasis with boric acid powder. Am J Obstet Gynecol. 1981;141(2):145-8.
84. Jovanovic R, Congema E, Nguyen H. Antifungal agents vs. boric acid for treating chronic mycotic vulvovaginitis. The Journal of reproductive medicine. 1991;36(8):593-7.
85. Bai Y, Yang D, Wang Y. Clinical study on treatment of acute eczema by Shuangfujin. Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi Jiehe Zazhi= Chinese Journal of Integrated Traditional and Western Medicine. 2007;27(1):72-5.
86. Borrelly J, Blech M, Grosdidier G, Martin-Thomas C, Hartemann P, editors. Contribution of a 3% solution of boric acid in the treatment of deep wounds with loss of substance. Ann Chir Plast Esthet; 1991.
87. Frederick Hawthorne M, Lee MW. A critical assessment of boron target compounds for boron neutron capture therapy. J Neurooncol. 2003;62:33-45.
88. Melero I, Castanon E, Alvarez M, Champiat S, Marabelle A. Intratumoural administration and tumour tissue targeting of cancer immunotherapies. Nature Reviews Clinical Oncology. 2021;18(9):558-76.
89. Tepedelen BE, Soya E, Korkmaz M. Boric acid reduces the formation of DNA double strand breaks and accelerates wound healing process. Biol Trace Elem Res. 2016;174:309-18.
90. Schultz GS, Wysocki A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen. 2009;17(2):153-62.
91. Culhaoglu AK, Özcan E, Kilicarslan MA, Seker E. Effect of Boric Acid Versus Conventional Irrigation Solutions on the Bond Strength Between Fiber Post and Root Dentin. J Adhes Dent. 2017;19(2).
92. Xu C, Liu C, Chen K, Zeng P, Chan EWC, Chen S. Otilonium bromide boosts antimicrobial activities of colistin against Gram-negative pathogens and their persisters. Communications Biology. 2022;5(1):613.
93. Leng F, Lin S, Wu W, Zhang J, Song J, Zhong M. Epidemiology, pathogenetic mechanism, clinical characteristics, and treatment of Vibrio vulnificus infection: a case report and literature review. Eur J Clin Microbiol Infect Dis. 2019;38:1999-2004.
94. Chen S-C, Chan K-S, Chao W-N, Wang P-H, Lin D-B, Ueng K-C, et al. Clinical outcomes and prognostic factors for patients with Vibrio vulnificus infections requiring intensive care: a 10-yr retrospective study. Crit Care Med. 2010;38(10):1984-90.
95. Oyekachukwu A, Elijah J, Eshu O, Nwodo O. Anti-inflammatory effects of the chloroform extract of Annona muricata leaves on phospholipase A2 and prostaglandin synthase activities. Transl Biomed. 2017;8(4):137.
96. Gunaydin C, Bilge SS. Effects of nonsteroidal anti-inflammatory drugs at the molecular level. The Eurasian journal of medicine. 2018;50(2):116.
97. Matu EN, Van Staden J. Antibacterial and anti-inflammatory activities of some plants used for medicinal purposes in Kenya. J Ethnopharmacol. 2003;87(1):35-41.
98. Auwal MS, Saka S, Mairiga IA, Sanda KA, Shuaibu A, Ibrahim A, editors. Preliminary phytochemical and elemental analysis of aqueous and fractionated pod extracts of Acacia nilotica (Thorn mimosa). Veterinary research forum: an international quarterly journal; 2014: Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
99. Bajaj S, Fuloria S, Subramaniyan V, Meenakshi DU, Wakode S, Kaur A, et al. Chemical characterization and anti-inflammatory activity of phytoconstituents from Swertia alata. Plants. 2021;10(6):1109.
100. Iwalewa E, Iwalewa O, Adeboye J. Analgesic, antipyretic, anti-inflammatory effects of methanol, chloroform and ether extracts of Vernonia cinerea less leaf. J Ethnopharmacol. 2003;86(2-3):229-34.
101. Baul S, Amin MN, Hussain MS, Mukul MEH, Millat MS, Rashed M. Phytochemical Nature and Pharmacological Evaluation of Chloroform Extract of Pandanus fascicularis L. Fruits): An in vivo Study J Bioanal Biomed. 2017;9(4):223.
102. Eloff J. Which extractant should be used for the screening and isolation of antimicrobial components from plants? J Ethnopharmacol. 1998;60(1):1-8.
103. Earl J, Kirkpatrick P. Ezetimibe. Nature Reviews Drug Discovery. 2003;2(2):97-9.
104. Verkman AS, Galietta LJ. Chloride channels as drug targets. Nature reviews Drug discovery. 2009;8(2):153-71.
105. Taddei A, Folli C, Zegarra-Moran O, Fanen P, Verkman A, Galietta LJ. Altered channel gating mechanism for CFTR inhibition by a high‐affinity thiazolidinone blocker. FEBS Lett. 2004;558(1-3):52-6.
106. Edwards CL, Hayes R. Tumor scanning with 67Ga citrate. J Nucl Med. 1969;10(2):103-5.
107. Johnston GS. Clinical applications of gallium in oncology. Int J Nucl Med Biol. 1981;8(4):249-55.
108. King SC, Reiman RJ, Prosnitz LR. Prognostic importance of restaging gallium scans following induction chemotherapy for advanced Hodgkin's disease. J Clin Oncol. 1994;12(2):306-11.
109. van Amsterdam J, Kluin-Nelemans J, Van Eck-Smit B, Pauwels E. Role of 67 Ga scintigraphy in localization of lymphoma. Ann Hematol. 1996;72:202-7.
110. Bar-Shalom R, Epelbaum R, Haim N, Ben-Arush MW, Ben-Shahar M, Gorenberg M, et al. Early detection of lymphoma recurrence with gallium-67 scintigraphy. J Nucl Med. 1993;34(12):2101-4.
111. Salloum E, Brandt DS, Caride VJ, Cornelius E, Zelterman D, Schubert W, et al. Gallium scans in the management of patients with Hodgkin's disease: a study of 101 patients. J Clin Oncol. 1997;15(2):518-27.
112. Hart MM, Adamson RH. Antitumor activity and toxicity of salts of inorganic group IIIa metals: aluminum, gallium, indium, and thallium. Proceedings of the National Academy of Sciences. 1971;68(7):1623-6.
113. Foster B, Clagett-Carr K, Hoth D, Leyland-Jones B. Gallium nitrate: the second metal with clinical activity. Cancer Treat Rep. 1986;70(11):1311-9.
114. WARRELL Jr RP, ISRAEL R, FRISONE M, SNYDER T, GAYNOR JJ, BOCKMAN RS. Gallium nitrate for acute treatment of cancer-related hypercalcemia: a randomized, double-blind comparison to calcitonin. Ann Intern Med. 1988;108(5):669-74.
115. Betoulle S, Etienne J, Vernet G. Acute immunotoxicity of gallium to carp (Cyprinus carpio L.). Bull Environ Contam Toxicol. 2002;68:817-23.
116. Whitacre C, Apseloff G, Cox K, Matkovic V, Jewell S, Gerber N. Suppression of experimental autoimmune encephalomyelitis by gallium nitrate. J Neuroimmunol. 1992;39(1-2):175-81.
117. Matkovic V, Balboa A, Clinchot D, Whitacre C, Zwilling B, Brown D. Gallium prevents adjuvant arthritis in rats and interferes with macrophage/T-cell function in the immune response. Current therapeutic research. 1991;50(2):255-67.
118. Apseloff G, Hackshaw KV, Whitacre C, Weisbrode SE, Gerber N. Gallium nitrate suppresses lupus in MRL/lpr mice. Naunyn-Schmiedeberg's archives of pharmacology. 1997;356:517-25.
119. Orosz CG, Wakely E, Bergese SD, VanBuskirk AM, Ferguson RM, Mullet D, et al. PREVENTION OF MURINE CARDIAC ALLOGRAFT REJECTION WITH GALLIUM NITRATE: Comparison with Anti-CD4 Monoclonal Antibody: 1. Transplantation. 1996;61(5):783-91.
120. Franz AK, Wilson SO. Organosilicon molecules with medicinal applications. J Med Chem. 2013;56(2):388-405.
121. Yagoda A, Petrylak D. Cytotoxic chemotherapy for advanced hormone‐resistant prostate cancer. Cancer. 1993;71(S3):1098-109.
122. Badger AM, DiMartino MJ. Immunomodulatory activity and non-specific suppressor cell generation by spirogermanium in murine and rat models of cell-mediated immunity. Immunopharmacology. 1988;16(1):33-43.
123. Mrema J, Slavik M, Davis J. Spirogermanium: a new drug with antimalarial activity against chloroquine-resistant Plasmodium falciparum. Int J Clin Pharmacol Ther Toxicol. 1983;21(4):167-71.
124. Goodman S. Therapeutic effects of organic germanium. Med Hypotheses. 1988;26(3):207-15.
125. Segal A, Munro JM, Ensell J, Sarner M. Indium-111 tagged leucocytes in the diagnosis of inflammatory bowel disease. The Lancet. 1981;318(8240):230-2.
126. Saverymuttu S, Peters A, Hodgson H, Chadwick V, Lavender J. Indium-111 autologous leucocyte scanning: comparison with radiology for imaging the colon in inflammatory bowel disease. Br Med J (Clin Res Ed). 1982;285(6337):255-7.
127. Stein DT, Gray GM, Gregory PB, Anderson M, Goodwin DA, Mcdougall LR. Location and activity of ulcerative and Crohn's colitis by indium 111 leukocyte scan: A prospective comparison study. Gastroenterology. 1983;84(2):388-93.
128. Saverymuttu S, Peters A, Lavender J, Pepys M, Hodgson H, Chadwick V. Quantitative fecal indium 111-labeled leukocyte excretion in the assessment of disease in Crohn's disease. Gastroenterology. 1983;85(6):1333-9.
129. Bhattacharya S, Lahiri A. Clinical role of indium-111 antimyosin imaging. Eur J Nucl Med. 1991;18:889-95.
130. Cummins B, Russell GJ, Chandler ST, Pears DJ, Cummins P. Uptake of radioiodinated cardiac specific troponin-I antibodies in myocardial infarction. Cardiovasc Res. 1990;24(4):317-27.
131. Sieswerda GT, Yang L, Boo MBd, Kamp O. Real‐Time Perfusion Imaging: A New Echocardiographic Technique for Simultaneous Evaluation of Myocardial Perfusion and Contraction. Echocardiography. 2003;20(6):545-55.
132. De Nardo D, Scibilia G, Macchiarelli A, Cassisi A, Tonelli E, Papalia U, et al. The role of indium-111 antimyosin (Fab) imaging as a noninvasive surveillance method of human heart transplant rejection. The Journal of heart transplantation. 1989;8(5):407-12.
133. Wang H, Wang J, Jiang Y, Li J, Tian S, Ran W, et al. The investigation of 125I seed implantation as a salvage modality for unresectable pancreatic carcinoma. J Exp Clin Cancer Res. 2013;32(1):1-8.

134. Podder TK, Fredman ET, Ellis RJ. Advances in radiotherapy for prostate cancer treatment. Molecular & Diagnostic Imaging in Prostate Cancer: Clinical Applications and Treatment Strategies. 2018:31-47.
135. Tanderup K, Ménard C, Polgar C, Lindegaard JC, Kirisits C, Pötter R. Advancements in brachytherapy. Advanced drug delivery reviews. 2017;109:15-25.
136. Jansen KL, Prast CJ. Ethnopharmacology of kratom and the Mitragyna alkaloids. J Ethnopharmacol. 1988;23(1):115-9.
137. Suwanlert S. A study of kratom eaters in Thailand. Bull Narc. 1975;27(3):21-7.
138. Assanangkornchai S, Muekthong A, Sam-Angsri N, Pattanasattayawong U. The use of Mitragynine speciosa (“Krathom”), an addictive plant, in Thailand. Subst Use Misuse. 2007;42(14):2145-57.
139. Vicknasingam B, Narayanan S, Beng GT, Mansor SM. The informal use of ketum (Mitragyna speciosa) for opioid withdrawal in the northern states of peninsular Malaysia and implications for drug substitution therapy. International Journal of Drug Policy. 2010;21(4):283-8.
140. Krauth D. Substance called “Kratom” becoming a growing problem. The Palm Beach Post. 2011;7(01).
141. Ward J, Rosenbaum C, Hernon C, McCurdy CR, Boyer EW. Herbal medicines for the management of opioid addiction: safe and effective alternatives to conventional pharmacotherapy? CNS drugs. 2011;25:999-1007.
142. Ohshiro T, Calderhead RG, Walker JB. Low level laser therapy: a practical introduction: Wiley; 1988.
143. Schindl A, Schindl M, Pernerstorfer-Schön H, Kerschan K, Knobler R, Schindl L. Diabetic neuropathic foot ulcer: successful treatment by low-intensity laser therapy. Dermatology. 1999;198(3):314-6.
144. Avci P, Gupta A, Sadasivam M, Vecchio D, Pam Z, Pam N, et al., editors. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg; 2013: NIH Public Access.
145. Cox B. Introduction to laser-tissue interactions. PHAS. 2007;4886:1-61.
146. Gitomer SJ, Jones RD. Laser-produced plasmas in medicine. IEEE transactions on plasma science. 1991;19(6):1209-19.
147. Hemvani N, Chitnis DS, Bhagwanani NS. Helium-neon and nitrogen laser irradiation accelerates the phagocytic activity of human monocytes. Photomed Laser Surg. 2005;23(6):571-4.
148. Denis M. Tumor necrosis factor and granulocyte macrophage-colony stimulating factor stimulate human macrophages to restrict growth of virulent Mycobacterium avium and to kill avirulent M. avium: killing effector mechanism depends on the generation of reactive nitrogen intermediates. J Leukoc Biol. 1991;49(4):380-7.
149. Bermudez L, Young LS. Tumor necrosis factor, alone or in combination with IL-2, but not IFN-gamma, is associated with macrophage killing of Mycobacterium avium complex. Journal of immunology (Baltimore, Md: 1950). 1988;140(9):3006-13.
150. Bhardwaj N, Pathania A, Kumar P. Naturally available nitrogen-containing fused heterocyclics as prospective lead molecules in medicinal chemistry. Current Traditional Medicine. 2021;7(1):5-27.
151. Henary M, Kananda C, Rotolo L, Savino B, Owens EA, Cravotto G. Benefits and applications of microwave-assisted synthesis of nitrogen containing heterocycles in medicinal chemistry. RSC advances. 2020;10(24):14170-97.
152. Kumar R, Sirohi T, Singh H, Yadav R, Roy R, Chaudhary A, et al. 1, 2, 4-triazine analogs as novel class of therapeutic agents. Mini-Rev Med Chem. 2014;14:168-207.
153. Bhattacharya S. Reactive oxygen species and cellular defense system. Free radicals in human health and disease. 2015:17-29.
154. Nowak WN, Deng J, Ruan XZ, Xu Q. Reactive oxygen species generation and atherosclerosis. Arterioscler Thromb Vasc Biol. 2017;37(5):e41-e52.
155. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408(6809):239-47.
156. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nature reviews Drug discovery. 2009;8(7):579-91.
157. Dias AP, da Silva Santos S, da Silva JV, Parise-Filho R, Ferreira EI, El Seoud O, et al. Dendrimers in the context of nanomedicine. Int J Pharm. 2020;573:118814.
158. Oliveira JM, Salgado AJ, Sousa N, Mano JF, Reis RL. Dendrimers and derivatives as a potential therapeutic tool in regenerative medicine strategies—A review. Progress in Polymer Science. 2010;35(9):1163-94.
159. Lin L, Fan Y, Gao F, Jin L, Li D, Sun W, et al. UTMD-promoted co-delivery of gemcitabine and miR-21 inhibitor by dendrimer-entrapped gold nanoparticles for pancreatic cancer therapy. Theranostics. 2018;8(7):1923.
160. Kojima S, Cuttler JM, Inoguchi K, Yorozu K, Horii T, Shimura N, et al. Radon therapy is very promising as a primary or an adjuvant treatment for different types of cancers: 4 case reports. Dose-Response. 2019;17(2):1559325819853163.
161. Kojima S, Cuttler JM, Shimura N, Koga H, Murata A, Kawashima A. Present and future prospects of radiation therapy using α-emitting nuclides. Dose-Response. 2018;16(1):1559325817747387.
162. Shuji Kojima JMC, Inoguchi K, Yorozu K. Radon Therapy Is Very Promising as a Primary or an Adjuvant Treatment for Different Types of Cancers: 4 Case.
163. Seidlin S, Marinelli L, Oshry E. Radioactive iodine therapy: effect on functioning metastases of adenocarcinoma of the thyroid. J Am Med Assoc. 1946;132(14):838-47.
164. Kosik KS. Alzheimer's disease: a cell biological perspective. Science. 1992;256(5058):780-3.
165. Balaban H, Nazıroğlu M, Demirci K, Övey İS. The protective role of selenium on scopolamine-induced memory impairment, oxidative stress, and apoptosis in aged rats: the involvement of TRPM2 and TRPV1 channels. Mol Neurobiol. 2017;54:2852-68.
166. Mangiapane E, Pessione A, Pessione E. Selenium and selenoproteins: an overview on different biological systems. Current Protein and Peptide Science. 2014;15(6):598-607.
167. Schweizer U, Bräuer AU, Köhrle J, Nitsch R, Savaskan NE. Selenium and brain function: a poorly recognized liaison. Brain Res Rev. 2004;45(3):164-78.
168. Schwarz K. Silicon, fibre, and atherosclerosis. The Lancet. 1977;309(8009):454-7.
169. Martin KR. Silicon: the health benefits of a metalloid. Interrelations between essential metal ions and human diseases. 2013:451-73.
170. Martin KR. The chemistry of silica and its potential health benefits. J Nutr Health Aging. 2007;11(2):94.
171. Broadhurst L. Silicon’s elemental benefits. Prolithic Available online at: http://www prolithic com/hpages/ref_docs/orthosil html Accessed on August. 1999;26.
172. Kerry RG, Singh KR, Mahari S, Jena AB, Panigrahi B, Pradhan KC, et al. Bioactive potential of morin loaded mesoporous silica nanoparticles: A nobel and efficient antioxidant, antidiabetic and biocompatible abilities in in-silico, in-vitro, and in-vivo models. OpenNano. 2023;10:100126.
173. Maehira F, Ishimine N, Miyagi I, Eguchi Y, Shimada K, Kawaguchi D, et al. Anti-diabetic effects including diabetic nephropathy of anti-osteoporotic trace minerals on diabetic mice. Nutrition. 2011;27(4):488-95.
174. Chen L, Zhou X, He C. Mesoporous silica nanoparticles for tissue‐engineering applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2019;11(6):e1573.
175. Al-Harbi N, Mohammed H, Al-Hadeethi Y, Bakry AS, Umar A, Hussein MA, et al. Silica-based bioactive glasses and their applications in hard tissue regeneration: A review. Pharmaceuticals. 2021;14(2):75.
176. Quignard S, Coradin T, Powell JJ, Jugdaohsingh R. Silica nanoparticles as sources of silicic acid favoring wound healing in vitro. Colloids and Surfaces B: Biointerfaces. 2017;155:530-7.
177. Muhler JC, Van Huysen G. Solubility of enamel protected by sodium fluoride and other compounds. J Dent Res. 1947;26(2):119-27.
178. Howell CL, Gish CW, Smiley RD, Muhler JC. Effect of topically applied stannous fluoride on dental caries experience in children. The Journal of the American Dental Association. 1955;50(1):14-7.
179. Rathmann SM, Ahmad Z, Slikboer S, Bilton HA, Snider DP, Valliant JF. The radiopharmaceutical chemistry of technetium-99m. Radiopharmaceutical chemistry. 2019:311-33.
180. Papagiannopoulou D. Technetium‐99m radiochemistry for pharmaceutical applications. Journal of Labelled Compounds and Radiopharmaceuticals. 2017;60(11):502-20.
181. Gazzin S, Masutti F, Vitek L, Tiribelli C. The molecular basis of jaundice: An old symptom revisited. Liver International. 2017;37(8):1094-102.
182. SCHMID R. Introduction to haem catabolism and studies on haem oxygenase. Portland Press Ltd.; 1976.
183. Varsio S. Caries-preventive treatment approaches for child and youth at two extremes of dental health in Helsinki, Finland. 1999.
184. ANDERSON RJ, SIZEMORE GW, WAHNER HW, CARNEY JA. Thyroid scintigram in familial medullary carcinoma of the thyroid gland. Clin Nucl Med. 1978;3(4):147-51.
185. Halpert G, Sredni B. The effect of the novel tellurium compound AS101 on autoimmune diseases. Autoimmunity reviews. 2014;13(12):1230-5.
186. Sredni B, editor Immunomodulating tellurium compounds as anti-cancer agents. Semin Cancer Biol; 2012: Elsevier.
187. Cohen BL. Anomalous behavior of tellurium abundances. Geochim Cosmochim Acta. 1984;48(1):203-5.
188. Lee J-H, Halperin-Sheinfeld M, Baatar D, Mughal MR, Tae H-J, Kim J-W, et al. Tellurium compound AS101 ameliorates experimental autoimmune encephalomyelitis by VLA-4 inhibition and suppression of monocyte and T cell infiltration into the CNS. Neuromolecular Med. 2014;16:292-307.
189. Herberman RB, Pinsky CM, editors. Polyribonucleotides for cancer therapy: Summary and recommendations for further research. J Immunother; 1985: LWW.
190. Wild RB. On the Action and Uses of Sulphur and certain of its Compounds as Intestinal Antiseptics. Proc R Soc Med. 1911;4(Ther_Pharmacol):13-24.
191. Predmore BL, Lefer DJ, Gojon G. Hydrogen sulfide in biochemistry and medicine. Antioxidants & redox signaling. 2012;17(1):119-40.
192. Perkins C, Kim CN, Fang G, Bhalla KN. Arsenic induces apoptosis of multidrug-resistant human myeloid leukemia cells that express Bcr-Abl or overexpress MDR, MRP, Bcl-2, or Bcl-xL. Blood, The Journal of the American Society of Hematology. 2000;95(3):1014-22.
193. Fan X-Y, Chen X-Y, Liu Y-J, Zhong H-M, Jiang F-L, Liu Y. Oxidative stress-mediated intrinsic apoptosis in human promyelocytic leukemia HL-60 cells induced by organic arsenicals. Sci Rep. 2016;6(1):29865.
194. Bentley R, Chasteen TG. Arsenic curiosa and humanity. The Chemical Educator. 2002;7:51-60.
195. Williams K. The introduction of ‘chemotherapy’using arsphenamine–the first magic bullet. J R Soc Med. 2009;102(8):343-8.
196. Gibaud S, Jaouen G. Arsenic-based drugs: from fowler’s solution to modern anticancer chemotherapy. Medicinal organometallic chemistry: Springer; 2010. p. 1-20.

Most read articles by the same author(s)