PHYTOCOMPOUND-BASED DRUG DISCOVERY APPROACH TO EXPLORE THE FROSTBITE HEALING POTENTIAL OF ABIETADIENE ISOLATED FROM PINUS ROXBURGHII

Main Article Content

Hasan Akbar Khan
Asma Ahmed
Khadija Kiran
Samra Hafeez
Rehana Badar
Sajjad Ahmad

Keywords

Abstract

Exposure to subzero temperatures usually leads to vascular damage causing severe ischemic injury known as frostbite, one of the prominent cold weather injuries that can lead to devastating consequences such as amputation of the extremities. Although rate of amputation due to frostbite has decreased recently due to thrombolytic therapy but this new regimen comes with a price as well which include symptoms such as profuse gastrointestinal bleeding in patients. Thus, there is a need to discover effective treatments with least side effects and more bioavailability rate. In current work, aqueous extract of Pinus roxburghii leaves were checked against dry-ice induced frostbite on plantar surfaces of albino Wistar rats (both genders, 150-200 g) by keeping heparin as control, followed by the computational evaluation of its phytocompounds to prioritize potential antiinflammatory and anti-thrombotic compounds against frostbite. Statistically analyzed results of molecular docking showed that among all secondary metabolites of P.roxburghii, abietadiene was most suitable potential ligand against antiplasmin and antithrombin III, which modulated anticoagulant pathway and proved to be a valuable anti-inflammatory and antithrombotic agent for wound healing. These results suggest the wound healing potential of abietadiene especially in case of frost bite which further needs to be validated experimentally.

Abstract 265 | pdf Downloads 114

References

1. Imray CHE, Oakley EHN. Cold still kills: cold-related illnesses in military practice freezing and non-freezing cold injury. J R Army Med Corps. 2005;151(4):218-222.
2. Imray CHE, Richards P, Greeves J, Castellani JW. Nonfreezing cold-induced injuries. J R Army Med Corps. 2011;157(1):79-84.
3. Yasir M, Nawaz A, Ghazanfar S, et al. Anti-bacterial activity of essential oils against multidrugresistant foodborne pathogens isolated from raw milk. Braz J Biol. 2022;84:e259449.
4. Nguyen CM, Chandler R, Ratanshi I, Logsetty S. Frostbite. In: Jeschke MG, Kamolz LP, Sjöberg F, Wolf SE, eds. Handbook of Burns Volume 1: Acute Burn Care. Springer International Publishing; 2020:529-547.
5. Sial N, Saeed S, Ahmad M, Hameed Y, Rehman A, Abbas M, Asif R, Ahmed H, Hussain MS,
6. Rehman JU, Atif M, Khan MR. Multi-Omics Analysis Identified TMED2 as a Shared Potential Biomarker in Six Subtypes of Human Cancer. Int J Gen Med. 2021 Oct 21;14:7025-7042
7. Bruen KJ, Ballard JR, Morris SE, Cochran A, Edelman LS, Saffle JR. Reduction of the Incidence of Amputation in Frostbite Injury with Thrombolytic Therapy. Arch. Surg. 2007;142(6):546-553.
8. Mao J, Huang X, Okla MK, et al. Risk Factors for TERT Promoter Mutations with Papillary
9. Thyroid Carcinoma Patients: A Meta-Analysis and Systematic Review. Comput Math Methods
10. Med. 2022;2022:1721526
11. Meyer AS, Johansson PI, Kjaergaard J, et al. Endothelial Dysfunction in Resuscitated Cardiac Arrest (ENDO-RCA): Safety and efficacy of low-dose Iloprost, a prostacyclin analogue, in addition to standard therapy, as compared to standard therapy alone, in post-cardiac-arrest-syndrome patients. Am. Heart J. 2020;219:9-20.
12. SHMT2 is associated with tumor purity, CD8+ T immune cells infiltration, and a novel therapeutic target in four different human cancers
13. Zhang L, Sahar AM, Li C, et al. A detailed multi-omics analysis of GNB2 gene in human cancers. Braz J Biol. 2022;84:e260169.
14. Stock G, Müller B, Krais T, Schillinger E. Iloprost, a stable analogue of PGI2: clinical results and pathophysiological considerations. Adv. Prostaglandin Thromboxane Leukot. Res. 1991;21:583-589.
15. Ullah L, Hameed Y, Ejaz S, et al. Detection of novel infiltrating ductal carcinoma-associated BReast CAncer gene 2 mutations which alter the deoxyribonucleic acid-binding ability of BReast CAncer gene 2 protein. J Cancer Res Ther. 2020;16(6):1402-1407.
16. Gusdon AM, Thompson CB, Quirk K, et al. CSF and serum inflammatory response and association with outcomes in spontaneous intracerebral hemorrhage with intraventricular extension: an analysis of the CLEAR-III Trial. J. Neuroinflammation.2021;18(1):1-11.
17. Spronk E, Sykes G, Falcione S, et al. Hemorrhagic transformation in ischemic stroke and the role of inflammation. Front. Neurol. 2021;12:661955.
18. Jickling GC, Liu D, Stamova B, et al. Hemorrhagic transformation after ischemic stroke in animals and humans. J Cereb Blood Flow Metab. 2014;34(2):185-199.
19. Vandenbroucke RE, Libert C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov. 2014;13(12):904-927.
20. Saleem S, Wang D, Zhao T, Sullivan RD, Reed GL. Matrix metalloproteinase-9 expression is enhanced by ischemia and tissue plasminogen activator and induces hemorrhage, disability and mortality in experimental stroke. Neuroscience. 2021;460:120-129.
21. Qiu M, Huang S, Luo C, et al. Pharmacological and clinical application of heparin progress: An essential drug for modern medicine. Biomed. Pharmacother. 2021;139:111561.
22. Furie B, Furie BC. Mechanisms of Thrombus Formation. NEJM. 2008;359(9):938-949.
23. Silberberg M. The causes and mechanism of thrombosis. Physiol. Rev. 1938;18(2):197-228.
24. Mackman N. Triggers, targets and treatments for thrombosis. Nature. 2008;451(7181):914-918. 22. Bansal A, Gupta P, Singh H, et al. Gastrointestinal complications in acute and chronic pancreatitis. JGH Open. 2019;3(6):450-455.
25. Daley MJ, Murthy MS, Peterson EJ. Bleeding risk with systemic thrombolytic therapy for pulmonary embolism: scope of the problem. Ther. Adv. Drug Saf. 2015;6(2):57-66.
26. Ageno W, Gallus AS, Wittkowsky A, Crowther M, Hylek EM, Palareti G. Oral anticoagulant therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e44S-e88S.
27. Weitz JI. New oral anticoagulants: a view from the laboratory. Am. J. Hematol .2012; 87(S1):S133-S136.
28. Jamshidi-Kia F, Lorigooini Z, Amini-Khoei H. Medicinal plants: Past history and future perspective. J. HerbMed Pharmacol. 2018;7(1). Accessed October 26, 2021. http://eprints.skums.ac.ir/6978/
29. Matos J, Cardoso C, Bandarra NM, Afonso C. Microalgae as healthy ingredients for functional food: a review. Food & function. 2017;8(8):2672-2685.
30. Akram M, Rashid A. Anti-coagulant activity of plants: mini review. J Thromb Thrombolysis. 2017;44(3):406-411.
31. Ramjan A, Hossain M, Runa JF, Md H, Mahmodul I. Evaluation of thrombolytic potential of three medicinal plants available in Bangladesh, as a potent source of thrombolytic compounds. Avicenna J Phytomed. 2014;4(6):430-436.
32. Jakaria Md, Islam M, Shariful I Md, Belal Talu M, Dhar Clint C, Ibrahim M. Thrombolysis Potential of Methanol Extracts from the Five Medicinal Plants Leaf, Available in Bangladesh. Pharmacologia. 2017;8(2):78-82.
33. Kotlyakov V, Komarova A. Elsevier’s Dictionary of Geography: In English, Russian, French, Spanish and German. Elsevier; 2006.
34. Bisht M, Sekar K, Arya D. Diversity, utilization pattern, threat status and conservation of medicinal plants in great Himalayan national park, Himachal pradesh, western Himalaya. APJR. 2019;1.
35. Gautam T, Gautam P, Keservani R, Sharma A. Phytochemical screening and wound healing potential of Cuscuta reflexa. J. Chin. Pharm. Sci.2015;24(5):292-302.
36. Man R, Samant S. Diversity, indigenous uses and conservation status of medicinal plants in Manali wildlife sanctuary, North Western Himalaya. IJTK. 2011;10(3):439-459.
37. Secim-Karakaya P, Saglam-Metiner P, Yesil-Celiktas O. Antimicrobial and wound healing properties of cotton fabrics functionalized with oil-in-water emulsions containing Pinus brutia bark extract and Pycnogenol® for biomedical applications. Cytotechnology. 2021;73(3):423-431.
38. Shankar, Devkota S, Paudel K, et al. Investigation of antioxidant and anti-inflammatory activity of roots of Rumex nepalensis. WJPPS. 2015;4:582-589.
39. Gupta B, Dass B. Composition of herbage in Pinus roxburghii Sargent stands: basal area and importance value index. Casp. J. Environ. Sci. 2007;5(2):93-98.
40. Siddiqui MF, Ahmed M, Wahab M, et al. Phytosociology of Pinus roxburghii Sargent (chir pine) in lesser Himalayan and Hindu Kush range of Pakistan. Pak J Bot. 2009;41(5):2357-2369.
41. Ahmed M, Husain T, Sheikh AH, Hussain SS, Siddiqui MF. Phytosociology and structure of Himalayan forests from different climatic zones of Pakistan. Pak J Bot. 2006;38(2):361.
42. Hassan A, Amjid I. Gas chromatography-mass spectrometric studies of essential oil of Pinus roxburghii stems and their antibacterial and antifungal activities. J. Med. Plant Res. 2009;3(9):670673.
43. Salem MZM, Ali HM, Basalah MO. Essential Oils from Wood, Bark, and Needles of Pinus roxburghiiSarg. from Alexandria, Egypt: Antibacterial and Antioxidant Activities. Bioresources. 2014;9(4):7454-7466.
44. Labib RM, Youssef FS, Ashour ML, Abdel-Daim MM, Ross SA. Chemical Composition of Pinus roxburghii Bark Volatile Oil and Validation of Its Anti-Inflammatory Activity Using Molecular Modelling and Bleomycin-Induced Inflammation in Albino Mice. Molecules. 2017;22(9):1384.
45. Farooq Z, Iqbal Z, Mushtaq S, Muhammad G, Iqbal MZ, Arshad M. Ethnoveterinary practices for the treatment of parasitic diseases in livestock in Cholistan desert (Pakistan). J Ethnopharmacol. 2008;118(2):213-219.
46. Sajid A, Manzoor Q, Iqbal M, Tyagi AK, Sarfraz RA, Sajid A. Pinus roxburghiiessential oil anticancer activity and chemical composition evaluation. EXCLI J. 2018;17:233-245.
47. Sharma A, Sharma L, Goyal R. GC/MS Characterization, in-vitro Antioxidant, Antiinflammatory and Antimicrobial Activity of Essential Oils from Pinus Plant Species from Himachal Pradesh, India. JEOBP.2020;23(3):522-531.
48. Safaeian L, Zolfaghari B, Assarzadeh N, Ghadirkhomi A. Antioxidant and Anti-hyperlipidemic Effects of Bark Extract of Pinus eldarica in Dexamethasone-induced Dyslipidemic Rats. J Adv Med Biomed Res.2019;27(125):49-56.
49. Tripathi A, Misra K. Molecular docking: A structure-based drug designing approach. JSM Chem. 2017;5(2):1042-1047.
50. Ben Sghaier M, Louhichi T, Hakem A, Ammari Y. Chemical investigation of polar extracts from Ruta chalpensis L. growing in Tunisia: Correlation with their antioxidant activities. J. New Sci. 2018;49(4): 2971-2978.
51. Jijith US, Jayakumari S. An Apparatus for the determination of rat paw Edema during In vivo Evaluation of Anti-inflammatory agents. Research J Pharm and Tech. 2020;13(5):1-3.
52. Abramov Y, Golden B, Sullivan M, et al. Histologic characterization of vaginal vs. abdominal surgical wound healing in a rabbit model. Wound Repair Regen.2007;15(1):80-86.
53. Satyal P, Paudel P, Raut J, Deo A, Dosoky NS, Setzer WN. Volatile constituents of Pinus roxburghii from Nepal. Pharmacognosy Res. 2013;5(1):43-48.
54. Tsvetkov DE, Kumar R, Devrani R, et al. Chemical constituents of the extracts of the knotwood of Pinus roxburghii Sarg. and their antioxidant activity. Russ. Chem. Bull. 2019;68(12):2298-2306. 53. Kaushik P, Kaushik D, Khokra SL. Ethnobotany and phytopharmacology of Pinus roxburghiiSargent: a plant review. J. Integr. Med.2013;11(6):371-376.
55. Qadir M, Shah WA, Banday JA. GC-MS analysis, antibacterial, antioxidant and anticancer activity of essential oil of Pinus roxburghii from Kashmir, India. Int J Res Pharm Chem. 2014;4(1):228-232.
56. Hamad AMA, Ates S, Olgun Ç, Gur M. Chemical Composition and Antioxidant Properties of Some Industrial Tree Bark Extracts. BioResources. 2019;14(3):5657-5671.
57. Lipinski CA. Lead-and drug-like compounds: the rule-of-five revolution.Drug Discov. Today Technol. 2004;1(4):337-341.
58. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997;23(1-3):3-25.
59. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717. 59. Kim S, Chen J, Cheng T, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49(D1):D1388-D1395.
60. The UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47(D1):D506-D515.
61. Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296-W303.
62. Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera—a visualization system for exploratory research and analysis.J. Comput. Chem. 2004;25(13):1605-1612.
63. Ramachandran S, Kota P, Ding F, Dokholyan NV. Automated minimization of steric clashes in protein structures. Proteins. 2011;79(1):261-270.
64. Liu Y, Grimm M, Dai W tao, Hou M chun, Xiao ZX, Cao Y. CB-Dock: a web server for cavity detection-guided protein–ligand blind docking. Acta Pharmacol Sin. 2020;41(1):138-144.
65. Yang J, Roy A, Zhang Y. Protein–ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics. 2013;29(20):2588-2595.
66. Porollo A, Meller J. Prediction-based fingerprints of protein-protein interactions. Proteins. 2007;66(3):630-645.
67. Laskowski RA, Swindells MB. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model. 2011;51(10):2778-2786.
68. Burmaoglu S, Kazancioglu EA, Kazancioglu MZ, et al. Synthesis, molecular docking and some metabolic enzyme inhibition properties of biphenyl-substituted chalcone derivatives. J. Mol. Struct. 2022;1254:132358.
69. Shuaib M, Ali M, Naquvi KJ. New abietatriene-type diterpenes linked with lanostenes from oleo-resin of Pinus roxburghii Sarg. Acta Pol Pharm. 2014;71(1):205-212.
70. Thapa R, Upreti A, Pandey BP. Chemical profiling and biological activity analysis of cone, bark, and needle of Pinus roxburghii collected from Nepal. J. Intercult.
71. Ethnopharmacol.2018;1(1):66-75.
72. Kaushik P, Lal S, Rana AC, Kaushik D. GC-MS analysis of bioactive constituents of Pinus roxburghii Sarg. (Pinaceae) from northern India. Res. J. Phytochem. 2014;8(2):42-46.
73. Trapp S, Croteau R. Defensive resin biosynthesis in conifers.Annu. Rev. Plant Biol. 2001;52(1):689-724.
74. Mane V. In-vitro Evaluation of Phytochemical Compounds for Their Potential Beneficial Effect in Immuno-Inflammatory Diseases. In: Proceedings of International Conference on Drug Discovery (ICDD).; 2020
75. Thummuri D, Guntuku L, Challa VS, Ramavat RN, Naidu VGM. Abietic acid attenuates RANKL induced osteoclastogenesis and inflammation associated osteolysis by inhibiting the NFKB and MAPK signaling. J. Cell. Physiol. 2019;234(1):443-453.
76. Talevi A, Cravero MS, Castro EA, Bruno-Blanch LE. Discovery of anticonvulsant activity of abietic acid through application of linear discriminant analysis. Bioorg. Med. Chem. Lett. 2007;17(6):1684-1690.
77. Ito Y, Ito T, Yamashiro K, et al. Antimicrobial and antibiofilm effects of abietic acid on cariogenic Streptococcus mutans. Odontology. 2020;108(1):57-65.
78. Roh SS, Park MK, Kim YU. Abietic acid from resina pini of Pinus species as a testosterone 5αreductase inhibitor. J. Health Sci. 2010;56(4):451-455.
79. Bedsted T, Swanson R, Chuang YJ, Bock PE, Björk I, Olson ST. Heparin and Calcium Ions Dramatically Enhance Antithrombin Reactivity with Factor IXa by Generating New Interaction Exosites. Biochemistry. 2003;42(27):8143-8152.
80. Abdul S, Leebeek FW, Rijken DC, Uitte de Willige S. Natural heterogeneity of α2-antiplasmin: functional and clinical consequences. Blood.2016;127(5):538-545.
81. Collen D, Wiman B. Fast-acting plasmin inhibitor in human plasma. Blood. 1978;51(4):563569.
82. Singh S, Houng A, Reed GL. Releasing the brakes on the fibrinolytic system in pulmonary emboli: unique effects of plasminogen activation and α2-antiplasmin inactivation. Circulation. 2017;135(11):1011-1020.
83. Gerber SS, Lejon S, Locher M, Schaller J. The human alpha(2)-plasmin inhibitor: functional characterization of the unique plasmin(ogen)-binding region. Cell Mol Life Sci. 2010;67(9):15051518.
84. Schaller J, Gerber SS. The plasmin–antiplasmin system: structural and functional aspects. Cell Mol Life Sci. 2011;68(5):785-801.
85. Urano T, Suzuki Y. Thrombolytic therapy targeting alpha 2-antiplasmin. Circulation. 2017;135(11):1021-1023.
86. Bauer KA, Nguyen-Cao TM, Spears JB. Issues in the diagnosis and management of hereditary antithrombin deficiency. Ann Pharmacother. 2016;50(9):758-767.
87. Plasminogen activator. In: Wikipedia.; 2021. Accessed January 3, 2022. https://en.wikipedia.org/w/index.php?title=Plasminogen_activator&oldid=1055120794

Most read articles by the same author(s)