CHEMICAL PROFILING OF ETHYL ACTATE FRACTION OF GALIUM TRICORNE STOKES AND ITS PHYTOTOXIC AND ANTHELMINTIC EVALUATION

Main Article Content

Ghallab Alotaibi
Sohrab Ali Khan
Haroon Khan
Sajjad Ahmad
Saba Zafar

Keywords

Anthelmintic, Phytotoxic, Galium tricorne, GC-MS analysis, ethyl acetate fraction

Abstract

The emergence of different diseases is of great concern globally. To treat these challenging diseases effectively is based on the discovery of potent drugs. Medicinal plants are the important source for the discovery of effective, economical and safe drugs. In order to authenticate its phytotoxic and anthelmintic effects, we have screened for the first time Galium tricorne Stokes against radish (Raphanus sativus L.) seeds and variety of helminthes. Besides these biological assays different compounds have been identified in ethyl acetate fraction (Gt.Eta) and sorted out on the basis of biological potential through Gas Chromatography-Mass Spectrometry (GC-MS) technique. Crude methanolic extract (Gt.Crd)and fractions of Galium tricorne Stokes were tested against radish seeds and different helminthes; adult earth worms (Pheretima posthuma), Round worms (Ascaridia galli), and tape worms (Raillietina spiralis). In phytotoxicity assay Chloroform (Gt.Chf) and Gt.Eta exhibited more phytotoxic effect at different concentration of 10, 100 and 1000 µg/mL as compared to other plant samples against radish seeds. The IC50 values for Gt.Chf and Gt.Eta against radish seeds root length inhibition and germination inhibitionwere 12.65, 21.36 µg/mL and 12.20 and 25.54 µg/mL respectively. The plant sample in concentration of 10, 20 and 40 mg/mLwasalso documented with prominent anthelmintic effects against Pheretima posthuma, Ascaridia galli and Raillietina spiralis.22 compounds were identified in Gt.Eta fraction through GC-MS analysis and several bioactive compounds were sorted out having biological potential.This research provided pharmacological background for the ethnomedicinal uses of Galium tricorne.

Abstract 56 | PDF Downloads 20

References

1. Khan S, Gul M: In vitro antifungal activity of Rhazyastricta. Pak J Pharm Sci 2007, 20(4):274–279.
2. Ahmad M, Sultana S, Hadi S, Hadda T, Rashid Zafar M, Khan M, Khan M, Yaseen G: An ethnobotanical study of medicinal plants in high mountainous region of Chail valley (District Swat- Pakistan). J EthnobiolEthnomed 2014, 10:36.
3. Abbasi A, Khana MA, Mushtaq A, Muhammad Z, Sarwat J, Shahzia S: Ethno-pharmacological application of medicinal plants to cure skin diseases and in folk cosmetics among the tribal communities of North-West Frontier Province. Ethnopharmacol 2010, 128:322–335.
4. Soza, V. L., & Olmstead, R. G. (2010). Molecular systematics of tribe Rubieae (Rubiaceae): Evolution of major clades, development of leaf–like whorls, and biogeography. Taxon, 59(3), 755-771.
5. Ergun, F., Deliorman, D., Velioglu, A., Sener, B., & Bozok Johansson, C. (1999). Anti-microbial activities of Galium species. Eczacilik Fakultesi Dergisi-Gazi Universitesi, 16(7-12).
6. Temizer, H., & Şene, B. (1996). Determination of total plavonoid in varioljs Galium species by differential pulse polarography. J. Fac. Pharm. Gazi, 13(1), 97-103.
7. Mohsin, R., & Choudhary, M. I. (2000). Medicinal plants with anticonvulsant activities. Studies in Natural Products Chemistry, Elsevier,22, 507-553.
8. Khan, S. A., Khan, H., Ahmad, S., Rehman, F. U., Khan, A. A., & Khan, M. A. (2022). GCMS characterization and biological potential of the seeds and aerial part of Galium tricorne Stokes. Brazilian Journal of Biology, 84, e256920.
9. Geary TG, Woo K, McCarthy JS, Mackenzie CD, Horton J, Prichard RK, de Silva NR, Olliaro PL, Lazdins-Helds JK, Engels DA: Unresolved issues in anthelmintic pharmacology for helminthiases of humans. Int J Parasitol2010, 40(1):1–13.
10. Blumenthal DS, Schultz MG: Incidence of intestinal obstruction in children infected with Ascarislumbricoides. Am J Trop Med Hyg 1975, 24(5):801.
11. Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D, HotezPJ: Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 2006, 367(9521):1521–1532.
12. Ivory C, Chadee K: DNA vaccines: designing strategies against parasitic infections. Genet Vaccine Ther 2004, 2(1):17.
13. Dhar D, Sharma R, Bansal G: Gastro-intestinal nematodes in sheep in Kashmir. Vet Parasitol 1982, 11(2):271–277.
14. Coles GC: Nematode control practices and anthelmintic resistance on British sheep farms. Vet Rec 1997, 141(4):91–93.
15. Liu LX, Weller P: Antiparasitic drugs. N Engl J Med 1996, 334(18):1178.
16. Ali N, Shah S, Shah I, Ahmed G, Ghias M, Imran K: Cytotoxic and anthelmintic potential of crude saponins isolated from AchilleaWilhelmsii C. Koch and TeucriumStocksianumboiss. BMC Complement Altern Med 2001, 11(1):106.
17. Akhtar M, Iqbal Z, Khan M, Lateef M, Bachman D: Anthelmintic activity of medicinal plants with particular reference to their use in animals in the Indo-Pakistan subcontinent. Small Ruminant Res 2000, 38(2):99–107.
18. Khuda F, Iqbal Z, Zakiullah, Khan A, Nasir F, N M: Metal analysis, phytotoxic, insecticidal and cytotoxic activities of selected medicinal plants of Khyber Pakhtunkhwa. Pak J Pharm Sci 2012, 25(1):51–58.
19. WHO: Evaluation of Certain Food Additives and Contaminants, WHO Technical Report Series 776. Geneva: World Health Organization; 1989.
20. Zeb A, Sadiq A, Ullah F, Ahmad S, Ayaz M: Phytochemical and toxicological investigations of crude methanolic extracts, subsequent fractions and crude saponins of Isodonrugosus. Biol Res 2014, 47:57.
21. Osadebe, P., & Okoye, F. (2003). Anti-inflammatory effects of crude methanolic extract and fractions of Alchornea cordifolia leaves. Journal of Ethnopharmacology, 89(1), 19-24.
22. Turker, A. U., & Camper, N. (2002). Biological activity of common mullein, a medicinal plant. Journal of Ethnopharmacology, 82(2-3), 117-125.
23. Parida, S., Patro, V. J., Mishra, U. S., Mohapatra, L., & Sannigrahi, S. (2010). Anthelmintic potential of crude extracts and its various fractions of different parts of Pterospermum acerifolium Linn. Inter J Pharma Sci Rev Res, 1(Suppl 2), 107-111.
24. Dash, G. K., Suresh, P., Sahu, S., Kar, D., Ganapaty, S., & Panda, S. (2002). Evaluation of Evolvulus alsinoides Linn. for anthelmintic and antimicrobial activities. Journal of Natural Remedies, 2(2), 182-185.
25. Kaushik, R., Katiyar, J., & Sen, A. (1974). Studies on the mode of action of anthelminticswith Ascaridia galli as the test parasite. The Indian Journal of Medical Research, 62(9), 1367-1375.
26. Hassouni, T., & Belghyti, D. (2006). Distribution of gastrointestinal helminths in chicken farms in the Gharb region—Morocco. Parasitology Research, 99(2), 181-183.
27. Lal, J., Chandra, S., Raviprakash, V., & Sabir, M. (1976). In vitro anthelmintic action of some indigenous medicinal plants on Ascardia galli worms. Indian journal of Physiology and Pharmacology, 20(2), 64-68.
28.Gbolade, A., & Adeyemi, A. (2008). Investigation of in vitro anthelmintic activities of Pycnanthus angolensis and Sphenocentrum jollyanum. Fitoterapia, 79(3), 220-222.
29. Stein, S., Mirokhin, D., & Tchekhovskoi, D. (2002). The NIST Mass Spectral Search Program for the NIST/EPA/NIH Mass Spectra Library; Standard Reference Data Program of the National Institute of Standards and Technology. Gaithersburg, MD, USA.
30. Adams, R. (2007). Identification of essential oil components by gas chromatography/ mass spectrometry. Allured Publishing: Carol Stream, IL, USA, pp. 804.
31. Inderjit. (1996). Plant phenolics in allelopathy. The Botanical Review, 186-202.
32. Akhtar, M. S., Iqbal, Z., Khan, M., & Lateef, M. (2000). Anthelmintic activity of medicinal plants with particular reference to their use in animals in the Indo–Pakistan subcontinent. Small Ruminant Research, 38(2), 99-107.
33 Ali, N., Shah, S. W. A., Shah, I., Ahmed, G., Ghias, M., & Khan, I. (2011). Cytotoxic and anthelmintic potential of crude saponins isolated from Achillea Wilhelmsii C. Koch and Teucrium Stocksianum boiss. BMC Complementary and Alternative Medicine, 11(1), 1-7.
34. Islam, T., Das, A., Shill, K. B., Karmakar, P., Islam, S., & Sattar, M. M. (2015). Evaluation of membrane stabilizing, anthelmintic, antioxidant activity with phytochemical screening of methanolic extract of Neolamarckia cadamba fruits. Journal of Medicinal Plants Research, 9(5), 151-158.
35. Sindhe, M. A., Bodke, Y. D., &Kenchappa, R. (2015). In vitro Anthelmintic activity of Wendlandiathyrsoidea leaves extracts against Pheretima posthuma. International Journal of Pharmacology, 2(6), 1-4.
36. Surana, A., Aher, A., Pal, S., & Deore, U. (2011). Evaluation of anthelmintic activity of Ixora coccinea. Int. J. Pharm. Lif. Sci, 6(2), 813-814.
37. Buathong, R., Schindler, F., Schinnerl, J., Valant-Vetschera, K., Bacher, M., Potthast, A., Rosenau, T., & Vajrodaya, S. (2019). Uncommon fatty acids, Iridoids and other secondary metabolites from the medicinal plant species Ixora cibdela Craib (Rubiaceae). Phytochemistry Letters, 33(77-80.
38. Sen, S., Chakraborty, R., Sridhar, C., Reddy, Y., & De, B. (2010). Free radicals, anti-oxidants, diseases and phytomedicines: current status and future prospect. International Journal of Pharmaceutical Sciences Review and Research, 3(1), 91-100.
39. Tangkiatkumjai M, Boardman H, Walker D-MJBCM, Therapies. Potential factors that influence usage of complementary and alternative medicine worldwide: a systematic review. 2020;20(1):115.)
40. Frescura VDS, Kuhn AW, Laughinghouse IV HD, Nicoloso FT, Lopes SJ & Tedesco SB (2013) Evaluation of the allelopathic, genotoxic, and anti-proliferative effect of the medicinal species Psychotriabrachypoda and Psychotriabirotula (Rubiaceae) on the germination and cell division of Eruca sativa (Brassicaceae).Caryologia, 66:138-144.
41. Oliveira AKMD, Matias R, Lopes SS &Fontoura FM (2014b) Allelopathy and influence of leaves of Palicourearigida (Rubiaceae) on seed germination and seedling formation in lettuce. Bioscience Journal, 30:938-947.
42. GATTI, A. B.; FERREIRA, A. G.; ARDUIN, M.; PEREZ, S. C. J. G. A. Allelopathic effects of aqueousextracts of Aristolochiaesperanzae O. Kuntze on development of SesamumindicumL. seedlings. ActaBotânicaBrasílica, São Paulo, v. 24, n. 2, p. 454-461, 2010.
43. GUSMAN, G. S.; YAMAGUSHI, M. Q.; VESTENA, S. Potencialalelopático de extratosaquosos de Bidenspilosa L., Cyperusrotundus L. e Euphorbia heterophylla L. Iheringia, SérieBotânica, Porto Alegre, v. 66, n.1, p. 87 - 98, 2011.
44. GRISI, P. U.; GUALTIERI, S. C. J.; RANAL, M. A.; SANTANA, D. G. Influênciaalelopática do extratoaquoso de raiz de Sapindussaponária L. sobrecapim-arroz e corda-de-viola. Bioscience Journal, Uberlândia, v. 29, n. 3, p. 760-766, 2013.
45. SILVESTRE, D.M.; KOLB, R.M.; FREI, F.; SANTOS, C. Phytotoxicity of organic extracts of Turneraulmifolia L.and TurneradiffusaWilld.exSchult. in cucumber seeds. ActaBotanicaBrasilica, Feira de Santana,v. 27, n. 3, p. 476-482, 2013.
46. Zhao, F., Wang, P., Lucardi, R. D., Su, Z., & Li, S. (2020). Natural sources and bioactivities of 2, 4-di-tert-butylphenol and its analogs.Toxins, 12(1), 35).
47. Shah, Z., Badshah, S. L., Iqbal, A., Shah, Z., Emwas, A. H., &Jaremko, M. (2022). Investigation of important biochemical compounds from selected freshwater macroalgae and their role in agriculture. Chemical and Biological Technologies in Agriculture, 9(1), 9.
48. Arora, S., Kumar, G., &Meena, S. (2017). GC-MS analysis of bioactive compounds from the whole plant hexane extract of CenchrussetigerusVahl. Pharma Science Monitor, 8(4), 137-46.
49. Igwe, O. U., &Offiong, S. P. (2015). Chemistry of semiochemicals used as trail pheromones in tropical fire ant (Solenopsisgeminata). International Journal of Chemical and Biochemical Sciences, 7, 35-40.
50. Adeyinka, O. A., Bankole, I. A. S., & John, R. (2022). Gc-Ms Bioprospecting Of Phytochemicals In The Ethanolic Extract Of Fresh Mangiferaindica LEAVES. Journal of Chemical Society of Nigeria, 47(4).
51. SAHAR, W.M.H. and AIDA, H.S., 2018. GC/MS identification and applications of bioactive seaweed extracts from Mediterranean coast of Egypt. The Egypt Journal of Aquatic Research, vol. 22, no. 5, pp. 1-21.
52. Kaur, N.; Arora, D.S.; Kalia, N.; Kaur, M. Bioactive potential of endophytic fungus Chaetomiumglobosum and GC-MS analysis of its responsible components. Sci. Rep. 2020, 10, 18792.
53. Amudha, P., Jayalakshmi, M., Pushpabharathi, N., &Vanitha, V. (2018). Identification of bioactive components in Enhalusacoroides seagrass extract by gas chromatography-mass spectrometry. Asian Journal of Pharmaceutical and Clinical Research, 11(10), 313-315.
54. Abirami, P., Gomathinayagam, M., &Panneerselvam, R. (2012). Preliminary study on the antimicrobial activity of Enicostemmalittorale using different solvents.Asian Pacific journal of tropical medicine, 5(7), 552-555.
55. Yogeswari, S., Ramalakshmi, S., Neelavathy, R., &Muthumary, J. Y. (2012). Identification and comparative studies of different volatile fractions from Monochaetiakansensis by GCMS.Global Journal of Pharmacology, 6(2), 65-71.
56. Hsouna, A. B., Trigui, M., Mansour, R. B., Jarraya, R. M., Damak, M., &Jaoua, S. (2011). Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratoniasiliqua essential oil with preservative effects against Listeria inoculated in minced beef meat. International journal of food microbiology, 148(1), 66-72.
57. Volkman, J. K. (1986). Acyclic isoprenoids as biological markers.Biological markers in the sedimentary record, 1-42.

Most read articles by the same author(s)