INHALED NANOMEDICINE FOR LUNG CANCER: INNOVATIONS AND CHALLENGES IN TARGETED PULMONARY DELIVERY.

Main Article Content

Parthiv Patel
Dr. Shweta Paroha
Dr. Pragnesh Patani

Keywords

.

Abstract

Lung cancer is the most common type of cancer worldwide and the leading cause of cancer-related mortality, accounting for around 18% of all cancer-related fatalities, according to the most recent data available on cancer surveillance. Lung cancer ranks among the top five most lethal cancers worldwide, with an overall 5-year survival rate of 20–26%. Inhaled delivery of chemotherapeutic nanomedicines has been proposed as a solution to this drawback of inhaled small molecule chemotherapeutics. These nanomedicines may serve as slow-release drug depots in the lungs or actively transport the packaged drug to lung cancer cells through cancer targeting ligands. Pulmonary drug delivery for lung cancer therapy has been only partly explored in recent decades even though it could represent an attractive alternative route of administration of drug-based therapies, including chemotherapy. In this article, we summarize the best results and limitations of these drug delivery systems and discuss the potential capacity of nanomedicine.

Abstract 0 | Pdf Downloads 0

References

1. World Health Organization. Global cancer burden growing, amidst mounting need for services. News release. Lyon France Geneva Switzerland: World Health Organization, 2024.
2. Al Khatib AO, El-Tanani M, Al-Obaidi H. Inhaled medicines for targeting non-small cell lung cancer. Pharmaceutics. 2023;15 (12):2777. doi: 10.3390/pharmaceutics15122777
3. Gupta C, Jaipuria A, Gupta N. Inhalable formulations to treat non-small cell lung cancer (NSCLC): recent therapies and developments. Pharmaceutics. 2022;15(1):139. doi: 10.3390/ pharmaceutics15010139
4. JemalABrayFCenterMMFerlayJWardEFormanDGlobal cancer statisticsCA Cancer J Clin2011612699021296855
5. Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144(8):1941–1953. doi:10.1002/ijc.31937
6. Walter FM, Rubin G, Bankhead C, et al. Symptoms and other factors associated with time to diagnosis and stage of lung cancer: a prospective cohort study. Br J Cancer. 2015;112(1):S6–13. doi:10.1038/bjc.2015.30
7. Lu T, Yang X, Huang Y, et al. Trends in the incidence, treatment, and survival of patients with lung cancer in the last four decades. Cancer Manag Res. 2019;Volume 11:943–953. doi:10.2147/CMAR.S187317
8. Inamura K. Lung cancer: understanding its molecular pathology and the 2015 WHO classification. Front Oncol. 2017;7:193. doi:10.3389/fonc.2017.00193
9. Arbour KC, Riely GJ. Systemic therapy for locally advanced and metastatic non–small cell lung cancer: a review. JAMA. 2019;322(8):764–774. doi:10.1001/jama.2019.11058
10. Wood SL, Pernemalm M, Crosbie PA, Whetton AD. The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets. Cancer Treat Rev. 2014;40(4):558–566. doi:10.1016/j.ctrv.2013.10.001
11. Oser MG, Niederst MJ, Sequist LV, Engelman JA. Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin. Lancet Oncol. 2015;16(4):e165–72. doi:10.1016/S1470-2045(14)71180-5
12. Kamat S, Kumari M, Jayabaskaran C. Nano-engineered tools in the diagnosis, therapeutics, prevention, and mitigation of SARS-CoV-2. J Cont Rel. 2021;338:813–836. doi:10.1016/j.jconrel.2021.08.046
13. Zhang Y, Wong CYJ, Gholizadeh H, et al. Microfluidics assembly of inhalable liposomal ciprofloxacin characterised by an innovative in vitro pulmonary model. Int J Pharm. 2023;635:122667. doi:10.1016/j.ijpharm.2023.122667
14. Gradon L, Orlicki D, Podgorski A. Deposition and retention of ultrafine aerosol particles in the human respiratory system. Normal and pathological cases. Int J Occup Saf Ergon. 2000;6(2):189–207. doi:10.1080/10803548.2000.11076451
15. Tseng, C.-L.; Su, W.-Y.; Yen, K.-C.; Yang, K.-C.; Lin, F.-H. The use of biotinylated-EGF-modified gelatin nanoparticle carrier to enhance cisplatin accumulation in cancerous lungs via inhalation. Biomaterials 2009, 30, 3476–3485.
16. Videira, M.; Almeida, A.J.; Fabra, À. Preclinical evaluation of a pulmonary delivered paclitaxel-loaded lipid nanocarrier antitumor effect. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 1208–1215.
17. Xi J, Longest PW, Martonen TB. Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways. J Appl Physiol. 2008;104(6):1761–1777. doi:10.1152/japplphysiol.01233.2007
18. Bhalani DV, Nutan B, Kumar A, Singh Chandel AK. Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics. Biomedicines. 2022;10(9):2055.
19. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–124. doi:10.1038/s41573-020-0090-8
20. Rocco, D.; Sapio, L.; Della Gravara, L.; Naviglio, S.; Gridelli, C. Treatment of Advanced Non-Small Cell Lung Cancer with RET Fusions: Reality and Hopes. Int. J. Mol. Sci. 2023, 24, 2433.
21. Lopez-Olivo, M.A.; Minnix, J.A.; Fox, J.G.; Nishi, S.P.E.; Lowenstein, L.M.; Maki, K.G.; Leal, V.B.; Tina Shih, Y.C.; Cinciripini, P.M.; Volk, R.J. Smoking cessation and shared decision-making practices about lung cancer screening among primary care providers. Cancer Med. 2021, 10, 1357–1365.
22. Huang, C.-Y.; Ju, D.-T.; Chang, C.-F.; Reddy, P.M.; Velmurugan, B.K. A review on the effects of current chemotherapy drugs and natural agents in treating non–small cell lung cancer. Biomedicine 2017, 7, 23.
23. Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature 2018, 553, 446–454.
24. Janssen-Heijnen, M.L.; Houterman, S.; Lemmens, V.E.; Louwman, M.W.; Maas, H.A.; Coebergh, J.W. Prognostic impact of increasing age and co-morbidity in cancer patients: A population-based approach. Crit. Rev. Oncol. Hematol. 2005, 55, 231–240.
25. Jones, R.N.; Hughes, J.M.; Weill, H. Asbestos exposure, asbestosis, and asbestos-attributable lung cancer. Thorax 1996, 51 (Suppl. S2), S9–S15.
26. Alberg, A.J.; Samet, J.M. Epidemiology of lung cancer. Chest 2003, 123, 21S–49S
27. Kirk, G.D.; Merlo, C.; O’Driscoll, P.; Mehta, S.H.; Galai, N.; Vlahov, D.; Samet, J.; Engels, E.A. HIV infection is associated with an increased risk for lung cancer, independent of smoking. Clin. Infect. Dis. 2007, 45, 103–110.
28. Hubbard, R.; Venn, A.; Lewis, S.; Britton, J. Lung cancer and cryptogenic fibrosing alveolitis. A population-based cohort study. Am. J. Respir. Crit. Care Med. 2000, 161, 5–8.
29. Zappa, C.; Mousa, S.A. Non-small cell lung cancer: Current treatment and future advances. Transl. Lung Cancer Res. 2016, 5, 288.
30. Lavacchi, D.; Mazzoni, F.; Giaccone, G. Clinical evaluation of dacomitinib for the treatment of metastatic non-small cell lung cancer (NSCLC): Current perspectives. Drug Des. Dev. Ther. 2019, 13, 3187–3198.
31. Robelin, P.; Hadoux, J.; Forestier, J.; Planchard, D.; Hervieu, V.; Berdelou, A.; Scoazec, J.-Y.; Valette, P.-J.; Leboulleux, S.; Ducreux, M. Characterization, prognosis, and treatment of patients with metastatic lung carcinoid tumors. J. Thorac. Oncol. 2019, 14, 993–1002.
32. Salzillo, A.; Ragone, A.; Spina, A.; Naviglio, S.; Sapio, L. Forskolin affects proliferation, migration and Paclitaxel-mediated cytotoxicity in non-small-cell lung cancer cell lines via adenylyl cyclase/cAMP axis. Eur. J. Cell Biol. 2023, 102, 151292.
33. An, X.; Wang, R.; Chen, E.; Yang, Y.; Fan, B.; Li, Y.; Han, B.; Li, Q.; Liu, Z.; Han, Y.; et al. A forskolin-loaded nanodelivery system prevents noise-induced hearing loss. J. Control. Release 2022, 348, 148–157.
34. Myrdal P.B., Sheth P., Stein S.W. Advances in metered dose inhaler technology: Formulation development. AAPS PharmSciTech. 2014;15:434–455. doi: 10.1208/s12249-013-0063-x
35. Kageyama T., Ito T., Tanaka S., Nakajima H. Physiological and immunological barriers in the lung. Semin. Immunopathol. 2024;45:533–547. doi: 10.1007/s00281-024-01003-y.
36. Murgia X., de Souza Carvalho C., Lehr C.-M. Overcoming the pulmonary barrier: New insights to improve the efficiency of inhaled therapeutics. Eur. J. Nanomed. 2014;6:157–169. doi: 10.1515/ejnm-2014-0019.
37. García-Fernández A., Sancenón F., Martínez-Máñez R. Mesoporous silica nanoparticles for pulmonary drug delivery. Adv Drug Deliv. Rev. 2021;177:113953. doi: 10.1016/j.addr.2021.113953.
38. Munkholm M., Mortensen J. Mucociliary clearance: Pathophysiological aspects. Clin. Physiol. Funct. Imaging. 2014;34:171–177. doi: 10.1111/cpf.12085.
39. Ganesan S., Comstock A.T., Sajjan U.S. Barrier function of airway tract epithelium. Tissue Barriers. 2013;1:e24997. doi: 10.4161/tisb.24997.
40. Rogueda P.G., Traini D. The nanoscale in pulmonary delivery. Part 1: Deposition, fate, toxicology and effects. Expert Opin. Drug Deliv. 2007;4:595–606. doi: 10.1517/17425247.4.6.595.
41. Wei S., Xie J., Luo Y., Ma Y., Tang S., Yue P., Yang M. Hyaluronic acid based nanocrystals hydrogels for enhanced topical delivery of drug: A case study. Carbohydr. Polym. 2018;202:64–71. doi: 10.1016/j.carbpol.2018.08.112.
42. Wang B., Wang L., Yang Q., Zhang Y., Qinglai T., Yang X., Xiao Z., Lei L., Li S. Pulmonary inhalation for disease treatment: Basic research and clinical translations. Mater. Today Bio. 2024;25:100966. doi: 10.1016/j.mtbio.2024.100966.
43. Banat H., Ambrus R., Csóka I. Drug combinations for inhalation: Current products and future development addressing disease control and patient compliance. Int. J. Pharm. 2023;643:123070. doi: 10.1016/j.ijpharm.2023.123070.
44. Xiroudaki S., Schoubben A., Giovagnoli S., Rekkas D.M. Dry powder inhalers in the digitalization era: Current status and future perspectives. Pharmaceutics. 2021;13:1455. doi: 10.3390/pharmaceutics13091455.
45. Raju S., Suryawanshi S. Use of pressurized metered dose inhalers in patients with chronic obstructive pulmonary disease: Review of evidence. Expert Rev. Clin. Pharmacol. 2014;7:929–937. doi: 10.1586/17476348.2014.905916.
46. Chandel A., Goyal A.K., Ghosh G., Rath G. Recent advances in aerosolised drug delivery. Biomed. Pharmacother. 2019;112:108601. doi: 10.1016/j.biopha.2019.108601.
47. Vaswani S.K., Creticos P.S. Metered Dost Inhaler: Past, Present, and Future. Ann. Allergy Asthma Immunol. 1998;80:11–23. doi: 10.1016/S1081-1206(10)62933-X.
48. Hess D.R. Aerosol delivery devices in the treatment of asthma. Respir. Care. 2008;53:699–725.
49. Smyth H.D. The influence of formulation variables on the performance of alternative propellant-driven metered dose inhalers. Adv. Drug Deliv. Rev. 2003;55:807–828. doi: 10.1016/S0169-409X(03)00079-6.
50. Legh-Land V., Haddrell A.E., Lewis D., Murnane D., Reid J.P. Water Uptake by Evaporating pMDI Aerosol Prior to Inhalation Affects Both Regional and Total Deposition in the Respiratory System. Pharmaceutics. 2021;13:941. doi: 10.3390/pharmaceutics13070941.
51. Usmani O.S. Choosing the right inhaler for your asthma or COPD patient. Ther. Clin. Risk Manag. 2019;15:461–472. doi: 10.2147/TCRM.S160365.
52. Newman S.P., Pavia D., Moren F., Sheahan N.F., Clarke S.W. Deposition of pressurised aerosols in the human respiratory tract. Thorax. 1981;36:52–55. doi: 10.1136/thx.36.1.52.
53. Sanchis J., Corrigan C., Levy M.L., Viejo J.L. Inhaler devices–from theory to practice. Respir. Med. 2013;107:495–502. doi: 10.1016/j.rmed.2012.12.007.
54. Ibrahim M., Verma R., Garcia-Contreras L. Inhalation drug delivery devices: Technology update. Med. Devices Evid. Res. 2015;8:131–139. doi: 10.2147/MDER.S48888.
55. Perriello E.A., Sobieraj D.M. The Respimat Soft Mist Inhaler, a Novel Inhaled Drug Delivery Device. Conn. Med. 2016;80:359–364.
56. Sadeghi T., Fatehi P., Pakzad L. Effect of Nasal Inhalation on Drug Particle Deposition and Size Distribution in the Upper Airway: With Soft Mist Inhalers. Ann. Biomed. Eng. 2024;52:1195–1212. doi: 10.1007/s10439-023-03423-7.
57. Smith G., Hiller C., Mazumder M., Bone R. Aerodynamic size distribution of cromolyn sodium at ambient and airway humidity. Am. Rev. Respir. Dis. 1980;121:513–517. doi: 10.1164/arrd.1980.121.3.513.
58. Wachtel H., Kattenbeck S., Dunne S., Disse B. The Respimat® development story: Patient-centered innovation. Pulm. Ther. 2017;3:19–30. doi: 10.1007/s41030-017-0040-8.
59. Carrigy N.B., Chang R.Y., Leung S.S., Harrison M., Petrova Z., Pope W.H., Hatfull G.F., Britton W.J., Chan H.-K., Sauvageau D. Anti-tuberculosis bacteriophage D29 delivery with a vibrating mesh nebulizer, jet nebulizer, and soft mist inhaler. Pharm. Res. 2017;34:2084–2096. doi: 10.1007/s11095-017-2213-4.
60. Iwanaga T., Tohda Y., Nakamura S., Suga Y. The Respimat® soft mist inhaler: Implications of drug delivery characteristics for patients. Clin. Drug Investig. 2019;39:1021–1030. doi: 10.1007/s40261-019-00835-z.
61. Anderson P. Use of Respimat Soft Mist inhaler in COPD patients. Int. J. Chron. Obs. Pulmon. Dis. 2006;1:251–259. doi: 10.2147/copd.2006.1.3.251.
62. Gumani D., Newmarch W., Puopolo A., Casserly B. Inhaler technology. Int. J. Respir. Pulm. Med. 2016;3:064.
63. Khairnar S.V., Jain D.D., Tambe S.M., Chavan Y.R., Amin P.D. Nebulizer systems: A new frontier for therapeutics and targeted delivery. Ther. Deliv. 2022;13:31–49. doi: 10.4155/tde-2021-0070.
64. Fink J.B., Stapleton K.W. Nebulizers. J. Aerosol Med. Pulm. Drug Deliv. 2024;37:140–156. doi: 10.1089/jamp.2024.29110.jbf.
65. SwiftDLAerosols and humidity therapy. Generation and respiratory deposition of therapeutic aerosolsAm Rev Respir Dis19801225 Pt 271777458052
66. PhippsPRGondaIAndersonSDBaileyDBautovichGRegional deposition of saline aerosols of different tonicities in normal and asthmatic subjectsEur Respir J199478147414827957833
67. ShinoharaHDistribution of lymphatic stomata on the pleural surface of the thoracic cavity and the surface topography of the pleural mesothelium in the golden hamsterAnat Rec1997249116239294645
68. DeffebachMECharanNBLakshminarayanSButlerJThe bronchial circulation. Small, but a vital attribute of the lungAm Rev Respir Dis198713524634813544986
69. Choi, S.H.; Byeon, H.J.; Choi, J.S.; Thao, L.; Kim, I.; Lee, E.S.; Shin, B.S.; Lee, K.C.; Youn, Y.S. Inhalable self-assembled albumin nanoparticles for treating drug-resistant lung cancer. J. Control. Release 2015, 197, 199–207.
70. Taratula, O.; Garbuzenko, O.B.; Chen, A.M.; Minko, T. Innovative strategy for treatment of lung cancer: Targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA. J. Drug Target. 2011, 19, 900–914. [Google Scholar] [CrossRef]
71. Taratula, O.; Kuzmov, A.; Shah, M.; Garbuzenko, O.B.; Minko, T. Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. J. Control. Release 2013, 171, 349–357.
72. Zhu, X.; Kong, Y.; Liu, Q.; Lu, Y.; Xing, H.; Lu, X.; Yang, Y.; Xu, J.; Li, N.; Zhao, D.; et al. Inhalable dry powder prepared from folic acid-conjugated docetaxel liposomes alters pharmacodynamic and pharmacokinetic properties relevant to lung cancer chemotherapy. Pulm. Pharmacol. Ther. 2019, 55, 50–61.
73. Wang B., Wang L., Yang Q., Zhang Y., Qinglai T., Yang X., Xiao Z., Lei L., Li S. Pulmonary inhalation for disease treatment: Basic research and clinical translations. Mater. Today Bio. 2024;25:100966. doi: 10.1016/j.mtbio.2024.100966.
74. Banat H., Ambrus R., Csóka I. Drug combinations for inhalation: Current products and future development addressing disease control and patient compliance. Int. J. Pharm. 2023;643:123070. doi: 10.1016/j.ijpharm.2023.123070
75. Xiroudaki S., Schoubben A., Giovagnoli S., Rekkas D.M. Dry powder inhalers in the digitalization era: Current status and future perspectives. Pharmaceutics. 2021;13:1455. doi: 10.3390/pharmaceutics13091455.
76. Raju S., Suryawanshi S. Use of pressurized metered dose inhalers in patients with chronic obstructive pulmonary disease: Review of evidence. Expert Rev. Clin. Pharmacol. 2014;7:929–937. doi: 10.1586/17476348.2014.905916.
77. Chandel A., Goyal A.K., Ghosh G., Rath G. Recent advances in aerosolised drug delivery. Biomed. Pharmacother. 2019;112:108601. doi: 10.1016/j.biopha.2019.108601.
78. Vaswani S.K., Creticos P.S. Metered Dost Inhaler: Past, Present, and Future. Ann. Allergy Asthma Immunol. 1998;80:11–23. doi: 10.1016/S1081-1206(10)62933-X.
79. Hess D.R. Aerosol delivery devices in the treatment of asthma. Respir. Care. 2008;53:699–725.
80. Smyth H.D. The influence of formulation variables on the performance of alternative propellant-driven metered dose inhalers. Adv. Drug Deliv. Rev. 2003;55:807–828. doi: 10.1016/S0169-409X(03)00079-6.
81. Legh-Land V., Haddrell A.E., Lewis D., Murnane D., Reid J.P. Water Uptake by Evaporating pMDI Aerosol Prior to Inhalation Affects Both Regional and Total Deposition in the Respiratory System. Pharmaceutics. 2021;13:941. doi: 10.3390/pharmaceutics13070941.
82. Usmani O.S. Choosing the right inhaler for your asthma or COPD patient. Ther. Clin. Risk Manag. 2019;15:461–472. doi: 10.2147/TCRM.S160365.
83. Newman S.P., Pavia D., Moren F., Sheahan N.F., Clarke S.W. Deposition of pressurised aerosols in the human respiratory tract. Thorax. 1981;36:52–55. doi: 10.1136/thx.36.1.52.
84. Sanchis J., Corrigan C., Levy M.L., Viejo J.L. Inhaler devices–from theory to practice. Respir. Med. 2013;107:495–502. doi: 10.1016/j.rmed.2012.12.007.
85. Ibrahim M., Verma R., Garcia-Contreras L. Inhalation drug delivery devices: Technology update. Med. Devices Evid. Res. 2015;8:131–139. doi: 10.2147/MDER.S48888.
86. Ye Y., Ma Y., Zhu J. The future of dry powder inhaled therapy: Promising or discouraging for systemic disorders? Int. J. Pharm. 2022;614:121457. doi: 10.1016/j.ijpharm.2022.121457.
87. Perriello E.A., Sobieraj D.M. The Respimat Soft Mist Inhaler, a Novel Inhaled Drug Delivery Device. Conn. Med. 2016;80:359–364.
88. Sadeghi T., Fatehi P., Pakzad L. Effect of Nasal Inhalation on Drug Particle Deposition and Size Distribution in the Upper Airway: With Soft Mist Inhalers. Ann. Biomed. Eng. 2024;52:1195–1212. doi: 10.1007/s10439-023-03423-7.
89. Wachtel H., Kattenbeck S., Dunne S., Disse B. The Respimat® development story: Patient-centered innovation. Pulm. Ther. 2017;3:19–30. doi: 10.1007/s41030-017-0040-8.
90. Carrigy N.B., Chang R.Y., Leung S.S., Harrison M., Petrova Z., Pope W.H., Hatfull G.F., Britton W.J., Chan H.-K., Sauvageau D. Anti-tuberculosis bacteriophage D29 delivery with a vibrating mesh nebulizer, jet nebulizer, and soft mist inhaler. Pharm. Res. 2017;34:2084–2096. doi: 10.1007/s11095-017-2213-4.
91. Zhou, Q.; Dong, C.; Fan, W.; Jiang, H.; Xiang, J.; Qiu, N.; Piao, Y.; Xie, T.; Luo, Y.; Li, Z. Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy. Biomaterials 2020, 240, 119902
92. Zhou, J.; Kroll, A.V.; Holay, M.; Fang, R.H.; Zhang, L. Biomimetic nanotechnology toward personalized vaccines. Adv. Mater. 2020, 32, 1901255.
93. Yu, D.; Peng, P.; Dharap, S.S.; Wang, Y.; Mehlig, M.; Chandna, P.; Zhao, H.; Filpula, D.; Yang, K.; Borowski, V. Antitumor activity of poly (ethylene glycol)–camptothecin conjugate: The inhibition of tumor growth in vivo. J. Control. Release 2005, 110, 90–102.

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 > >>