“A REVIEW ON ANALYTICAL METHOD DEVELOPMENT AND VALIDATION OF DAPAGLIFLOZIN: A COMPREHENSIVE REVIEW”

Main Article Content

Dhruvi V Patel
Dr. Neha Tiwari
Dr. Pragnesh Patani

Keywords

Dapagliflozin, Sodium–glucose cotransporter-2 (SGLT2) inhibitors, Antidiabetic drug, Analytical method development, Method validation, International Council for Harmonisation (ICH) guidelines, Pharmaceutical analysis.

Abstract

Dapagliflozin, a selective sodium-glucose co-transporter 2 (SGLT2) inhibitor, is widely prescribed for the management of type 2 diabetes mellitus due to its novel mechanism of promoting renal glucose excretion and improving glycemic control. With its growing clinical use and the availability of multiple fixed-dose combinations, the need for reliable, validated analytical methods to support drug development, formulation, quality control, and regulatory compliance has increased significantly. This comprehensive review summarizes the various analytical techniques reported for dapagliflozin, including UV-spectrophotometry, RP-HPLC, UPLC, LC-MS/MS, and stability-indicating assays.


The article discusses the application of these methods in bulk drug and dosage form assay, simultaneous estimation in combination formulations, forced-degradation and stability studies, impurity profiling, bioanalytical quantification in plasma for pharmacokinetic studies, and dissolution testing. Validation parameters such as linearity, precision, accuracy, sensitivity (LOD/LOQ), robustness, and specificity, as outlined by ICH guidelines, are highlighted across reported methods. Special emphasis is given to stability-indicating methods that separate dapagliflozin from its degradants under acid, base, oxidative, photolytic, and thermal conditions.


Despite the effectiveness of conventional methods, challenges such as the use of phosphate buffers and large volumes of toxic organic solvents raise concerns about instrument damage, operator safety, cost, and environmental sustainability. To overcome these limitations, emerging trends focus on developing greener, eco-friendly, and high-throughput analytical approaches.


In conclusion, the review provides an updated and detailed insight into existing analytical strategies for dapagliflozin, while also emphasizing the future need for simple, robust, cost-effective, and environmentally sustainable methods. These advancements will play a crucial role in ensuring the safe and efficient use of dapagliflozin in pharmaceutical development, routine quality control, and clinical research.

Abstract 0 | PDF Downloads 0

References

1. International Diabetes Federation. IDF Diabetes Atlas, 8th ed. Brussels, Belgium: International Diabetes Federation; 2017.
2. Bailey CJ, Gross JL, Pieters A, Bastien A, List JF. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375(9733):2223-33.
3. Kasichayanula S, Liu X, Pe Benito M, Yao M, Pfister M, LaCreta FP, et al. The influence of kidney function on dapagliflozin exposure, metabolism and pharmacodynamics in healthy subjects and in patients with type 2 diabetes mellitus. Br J Clin Pharmacol. 2013;76(3):432-44.
4. Obermeier, M1 ; Yao, M2 ; Meng, W7 ; Ellsworth, B. A7 ; Whaley, J. M6 ; Humphreys, W. G2 ; Khanna, A1 ; Koplowitz, B1 ; Zhu, M2 ; Li, W2 ; Komoroski, B4 ; Kasichayanula, S5 ; Discenza, L3 ; Washburn, W7 In Vitro Characterization and Pharmacokinetics of Dapagliflozin (BMS-512148), a Potent Sodium-Glucose Cotransporter Type II Inhibitor, in Animals and Humans. Drug Metab-Dispos. 2010;38(3):405-14.
5. Stark Casagrande S., Fradkin J., Saydah S., Rust K., Cowie C. (2013) The prevalence of meeting A1C, blood pressure, and LDL goals among people with diabetes, 1988–2010. Diabetes Care 36: 2271–2279.
6. Gomez-Peralta F, Abreu C, Lecube A, Bellido D, Soto A, Morales C, et al. Practical Approach to Initiating SGLT2 Inhibitors in Type 2 Diabetes. Diabetes Ther. 2017;8(5):953-62.
7. Kasichayanula S, Chang M, Hasegawa M, Liu X, Yamahira N, LaCreta FP, et al. Pharmacokinetics and pharmacodynamics of dapagliflozin, a novel selective inhibitor of sodium-glucose co-transporter type 2, in Japanese subjects without and with type 2 diabetes mellitus. Diabetes Obes Metab. 2011;13(4):357-65.
8. Jani BR, Shah KV, Kapupara PP. Development and validation of UV spectroscopic first derivative method for simultaneous estimation of dapagliflozin and metformin hydrochloride in synthetic mixture. J Bioequiv Availab. 2015;7(6):288-93.
9. Manasa S, Dhanalakshmi K, Reddy NG, Srinivasa S. Method development and validation of dapagliflozin in API by RP-HPLC and UV-spectroscopy. Int J Pharm Sci Drug Res. 2014;6(3):250-2.
10. Chitra KP, Eswaraiah MC, Rao MV. Unique UV spectrophotometric method for reckoning of dapagliflozin in bulk and pharmaceutical dosage forms. J Chem Pharm Res. 2015;7(9):45-9.
11. Karlsson EM, Naggar AH, Alterud Z, Derendorf H. Pharmacokinetics and pharmacodynamics of dapagliflozin in patients with type 2 diabetes mellitus. Clin Pharmacokinet. 2012;51(5):295-304.
12. Gomez-Peralta F, Abreu C, Lecube A, Bellido D, Soto A, Morales C, et al. Practical Approach to Initiating SGLT2 Inhibitors in Type 2 Diabetes. Diabetes Ther. 2017;8(5):953-62.
13. Kasichayanula S, Chang M, Hasegawa M, Liu X, Yamahira N, LaCreta FP, et al. Pharmacokinetics and pharmacodynamics of dapagliflozin, a novel selective inhibitor of sodium-glucose co-transporter type 2, in Japanese subjects without and with type 2 diabetes mellitus. Diabetes Obes Metab. 2011;13(4):357-65.
14. Jani BR, Shah KV, Kapupara PP. Development and validation of UV spectroscopic first derivative method for simultaneous estimation of dapagliflozin and metformin hydrochloride in synthetic mixture. J Bioequiv Availab. 2015;7(6):288-93.
15. Manasa S, Dhanalakshmi K, Reddy NG, Srinivasa S. Method development and validation of dapagliflozin in API by RP-HPLC and UV-spectroscopy. Int J Pharm Sci Drug Res. 2014;6(3):250-2.
16. Chitra KP, Eswaraiah MC, Rao MV. Unique UV spectrophotometric method for reckoning of dapagliflozin in bulk and pharmaceutical dosage forms. J Chem Pharm Res. 2015;7(9):45-9.
17. Karlsson EM, Naggar AH, Alterud Z, Derendorf H. Pharmacokinetics and pharmacodynamics of dapagliflozin in patientswith type 2 diabetes mellitus. Clin Pharmacokinet. 2012;51(5):295-304.
18. Gomez-Peralta F, Abreu C, Lecube A, Bellido D, Soto A, Morales C, et al. Practical Approach to Initiating SGLT2 Inhibitors in Type 2 Diabetes. Diabetes Ther. 2017;8(5):953-62.
19. Kasichayanula S, Chang M, Hasegawa M, Liu X, Yamahira N, LaCreta FP, et al. Pharmacokinetics and pharmacodynamics
20. of dapagliflozin, a novel selective inhibitor of sodium-glucose co-transporter type 2, in Japanese subjects without and with type 2 diabetes mellitus. Diabetes Obes Metab. 2011;13(4):357-65.
21. Jani BR, Shah KV, Kapupara PP. Development and validation of UV spectroscopic first derivative method for simultaneous estimation of dapagliflozin and metformin hydrochloride in synthetic mixture. J Bioequiv Availab. 2015;7(6):288-93.
22. Manasa S, Dhanalakshmi K, Reddy NG, Srinivasa S. Method development and validation of dapagliflozin in API by RP- HPLC and UV-spectroscopy. Int J Pharm Sci Drug Res. 2014;6(3):250-2.
23. Chitra KP, Eswaraiah MC, Rao MV. Unique UV spectrophotometric method for reckoning of dapagliflozin in bulk and pharmaceutical dosage forms. J Chem Pharm Res. 2015;7(9):45-9.
24. Karlsson EM, Naggar AH, Alterud Z, Derendorf H. Pharmacokinetics and pharmacodynamics of dapagliflozin in patients with type 2 diabetes mellitus. Clin Pharmacokinet. 2012;51(5):295-304.
25. Gomez-Peralta F, Abreu C, Lecube A, Bellido D, Soto A, Morales C, et al. Practical Approach to Initiating SGLT2 Inhibitors in Type 2 Diabetes. Diabetes Ther. 2017;8(5):953-62.
26. Kasichayanula S, Chang M, Hasegawa M, Liu X, Yamahira N, LaCreta FP, et al. Pharmacokinetics and pharmacodynamics of dapagliflozin, a novel selective inhibitor of sodium-glucose co-transporter type 2, in Japanese subjects without and with type 2 diabetes mellitus. Diabetes Obes Metab. 2011;13(4):357-65.
27. Jani BR, Shah KV, Kapupara PP. Development and validation of UV spectroscopic first derivative method for simultaneous estimation of dapagliflozin and metformin hydrochloride in synthetic mixture. J Bioequiv Availab. 2015;7(6):288-93.
28. Manasa S, Dhanalakshmi K, Reddy NG, Srinivasa S. Method development and validation of dapagliflozin in API by RP-HPLC and UV-spectroscopy. Int J Pharm Sci Drug Res. 2014;6(3):250-2.
29. Chitra KP, Eswaraiah MC, Rao MV. Unique UV spectrophotometric method for reckoning of dapagliflozin in bulk and pharmaceutical dosage forms. J Chem Pharm Res. 2015;7(9):45-9.
30. Karlsson EM, Naggar AH, Alterud Z, Derendorf H. Pharmacokinetics and pharmacodynamics of dapagliflozin in patients with type 2 diabetes mellitus. Clin Pharmacokinet. 2012;51(5):295-304.
31. Gomez-Peralta F, Abreu C, Lecube A, Bellido D, Soto A, Morales C, et al. Practical Approach to Initiating SGLT2 Inhibitors in Type 2 Diabetes. Diabetes Ther. 2017;8(5):953-62.
32. Kasichayanula S, Chang M, Hasegawa M, Liu X, Yamahira N, LaCreta FP, et al. Pharmacokinetics and pharmacodynamics of dapagliflozin, a novel selective inhibitor of sodium-glucose co-transporter type 2, in Japanese subjects without and with type 2 diabetes mellitus. Diabetes Obes Metab. 2011;13(4):357-65.
33. Jani BR, Shah KV, Kapupara PP. Development and validation of UV spectroscopic first derivative method for simultaneous estimation of dapagliflozin and metformin hydrochloride in synthetic mixture. J Bioequiv Availab. 2015;7(6):288-93.
34. Manasa S, Dhanalakshmi K, Reddy NG, Srinivasa S. Method development and validation of dapagliflozin in API by RP-HPLC and UV-spectroscopy. Int J Pharm Sci Drug Res. 2014;6(3):250-2.
35. Chitra KP, Eswaraiah MC, Rao MV. Unique UV spectrophotometric method for reckoning of dapagliflozin in bulk and pharmaceutical dosage forms. J Chem Pharm Res. 2015;7(9):45-9.
36. Karlsson EM, Naggar AH, Alterud Z, Derendorf H. Pharmacokinetics and pharmacodynamics of dapagliflozin in patients with type 2 diabetes mellitus. Clin Pharmacokinet. 2012;51(5):295-304.
37. Gomez-Peralta F, Abreu C, Lecube A, Bellido D, Soto A, Morales C, et al. Practical Approach to Initiating SGLT2 Inhibitors in Type 2 Diabetes. Diabetes Ther. 2017;8(5):953-62.
38. Kasichayanula S, Chang M, Hasegawa M, Liu X, Yamahira N, LaCreta FP, et al. Pharmacokinetics and pharmacodynamics of dapagliflozin, a novel selective inhibitor of sodium-glucose co-transporter type 2, in Japanese subjects without and with type 2 diabetes mellitus. Diabetes Obes Metab. 2011;13(4):357-65.
39. Jani BR, Shah KV, Kapupara PP. Development and validation of UV spectroscopic first derivative method for simultaneous estimation of dapagliflozin and metformin hydrochloride in synthetic mixture. J Bioequiv Availab. 2015;7(6):288-93.
40. Manasa S, Dhanalakshmi K, Reddy NG, Srinivasa S. Method development and validation of dapagliflozin in API by RP-HPLC and UV-spectroscopy. Int J Pharm Sci Drug Res. 2014;6(3):250-2.
41. Chitra KP, Eswaraiah MC, Rao MV. Unique UV spectrophotometric method for reckoning of dapagliflozin in bulk and pharmaceutical dosage forms. J Chem Pharm Res. 2015;7(9):45-9.
42. Karlsson EM, Naggar AH, Alterud Z, Derendorf H. Pharmacokinetics and pharmacodynamics of dapagliflozin in patients with type 2 diabetes mellitus. Clin Pharmacokinet. 2012;51(5):295-304.
43. Yang L, Li H, Li H, Jia Y, Liang W. Pharmacokinetic and pharmacodynamic properties of dapagliflozin in Chinese patients with type 2 diabetes. Clin Drug Investig. 2013;33(10):741-8.
44. Patel H, Mundada P, Sawant K. Development and validation of a stability-indicating HPLC method for rapid determination of dapagliflozin. Int J ChemTech Res. 2017;10(1):281-91.
45. Deepan T, Ambethkar V. Stability indicating HPLC method for simultaneous determination of metformin hydrochloride and dapagliflozin in bulk and tablet dosage form. Int J Curr Pharm Res. 2017;9(5):42-7.
46. Zhang M, Zhang L, Wu B, Song H, An Z, Li S. Simultaneous determination of dapagliflozin and saxagliptin in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. Biomed Chromatogr. 2016;30(6):881-9.
47. Tatarkiewicz K, Polizzi C, Villescaz C, D'Souza LJ, Wang Y, Janssen S, et al. Combined antidiabetic benefits of exenatide and dapagliflozin in diabetic mice. Diabetes Obes Metab. 2014;16(4):376-80.
48. Sanagapati M, Lakshmi K, Dhanalakshmi K, Srinivas P. Development and validation of stability-indicating RP-HPLC method for determination of dapagliflozin. J Adv Pharm Edu Res. 2014;4(3):350-3.
49. A Mullard FDA drug approvals: the FDA approved 41 new therapeutics in 2014, but the bumper year fell short of the commercial power of the drugs approved in 2013 Nat. Rev. Drug Discov., 14 (2014), pp. 77-82 2015.
50. T. Sen, H.J. Heerspink. A kidney perspective on the mechanism of action of sodium glucose co-transporter 2 inhibitors Cell Metabol., 33 (2021), pp. 732-739.
51. S.B. Poulsen, R.A. Fenton, T. Rieg. Sodium-glucose cotransport Curr. Opin. Nephrol. Hypertens., 24 (2015), p. 463.
52. E.M. Wright. SGLT2 inhibitors: physiology and pharmacology Kidney, 2 (2021), p. 2027.
53. Y.N. Sun, Y. Zhou, X. Chen, W.S. Che, S.W. Leung. The efficacy of dapagliflozin combined with hypoglycemic drugs in treating type 2 diabetes: protocol for meta-analysis of randomized controlled trials Syst. Rev., 2 (2013), pp. 1-4.
54. J.M. Gamble, S.H. Simpson, D.T. Eurich, S.R. Majumdar, J.A. Johnson. Insulin use and increased risk of mortality in type 2 diabetes: a cohort study, Diabetes Obes Metabolism, 12 (2010), pp. 47-53.
55. O.G. Albarrán, F.J. Ampudia-Blasco. Dapagliflozin, the first SGLT-2 inhibitor in the treatment of type 2 diabetes Med. Clínica, 141 (2013), pp. 36-43.
56. T. Salvatore, R. Galiero, A. Caturano, L. Rinaldi, A. Di Martino, G. Albanese, J. Di Salvo, R . Epifani, R. Marfella, G. Docimo, M. Lettieri. An overview of the cardiorenal protective mechanisms of SGLT2 inhibitors Int. J. Mol. Sci., 23 (2022), p. 3651.
57. T. Nguyen, S. Wen, M. Gong, X. Yuan, D. Xu, C. Wang, J. Jin, L. Zhou. Dapagliflozin activates neurons in the central nervous system and regulates cardiovascular activity by inhibiting SGLT-2 in mice. Diabetes Metabol Syndrome Obes, 13 (2020), p. 2781.
58. B.C. Lupsa, S.E. Inzucchi. Use of SGLT2 inhibitors in type 2 diabetes: weighing the risks and benefits Diabetologia, 61 (2018), pp. 2118-2125.
59. A.J. Hahr, M.E. Molitch. Management of diabetes mellitus in patients with chronic kidney disease, Clin Diabetes Endocrinol, 1 (2015), pp. 1-9.
60. J. Bolinder, Ö. Ljunggren, J. Kullberg, L. Johansson, J. Wilding, A.M. Langkilde, J. Sugg, S. Parikh. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin J. Clin. Endocrinol. Metabol., 97 (2012), pp. 1020-1031.
61. Mante G V, Gupta K R, Hemke A T. Estimation of dapagliflozin from its tablet formulation by UVspectrophotometry. Pharmaceutical Methods. 2017 Sep 22; 8(2):102-7.
62. Debata J, Kumar S, Jha S K, Khan A., A New RP-HPLC method development and validation of dapagliflozin in bulk and tablet dosage form. International Journal of Drug Development and Research. 2017; 9(2):0-0. 7.
63. Verma M V, Patel C J, Patel M M. Development and stability indicating HPLC method for dapagliflozin in API and pharmaceutical dosage form. International Journal of Applied Pharmaceutics. 2017; 9(5):33-41.
64. Sanagapati M, Lakshmi D K, Reddy N G, Sreenivasa S. Development and validation of stability-indicating RP-HPLC method for determination of dapagliflozin. Journal of Advanced Pharmacy Education & Research. 2014 Jul; 4(3). 9.
65. Jani B R, Shah K V, Kapupara P P. Development and validation of UV spectroscopic first derivative method for simultaneous estimation of dapagliflozin and metformin hydrochloride in Synthetic mixture. J Bioequiv. 2015; 1(1):102. 10.
66. Urooj A, Sundar P S, Vasanthi R, Raja M A, Dutt KR, Rao K N, Ramana H. Development and validation of RP-HPLC method for simultaneous estimation of dapagliflozin and metformin in bulk and in synthetic mixture. World J Pharm Pharm Sci. 2017 May 20; 6(7):2139-50.
67. A Madhavi S, Prameela Rani A P. Development and validation of a method for simultaneous determination of dapagliflozin and saxagliptin in a formulation by RP-UPLC. World J Pharma Res. 2017 Aug 11; 6(12):904-16.
68. ICH Steering Committee: International Conference on Harmonization (ICH) of Technical Requirements for Registration of Pharmaceutical for Human Use. Validation of Analytical Procedure-Methodology, Geneva. 2006.
69. ICH, Q2B Validation of Analytical Procedure: Methodology, in: Proceeding of the International Conference on Harmonization, Geneva; 1996. Available from: https://www.ich.org/ fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/ _R1/Step4/Q2_R1__Guidelines. [Last accessed on 10 Apr 2019].
70. Chaudhari U., Analytical Method Development, Validation and Forced Degradation Studies of Dapagliflozin (RP-HPLC) — example stability-indicating RP-HPLC method and forced degradation.
71. He X. et al., Development of UPLC-MS/MS method for simultaneous quantitation of metformin and dapagliflozin in human plasma; application to PK studies. (Biomed Central, 2022). — practical for bioanalysis and PK.
72. Van der Aart-van Abbenbroek A. B. et al., Simple, fast and robust LC-MS/MS method for simultaneous quantification of canagliflozin, dapagliflozin and empagliflozin — illustrates multi-SGLT2 analyte methods.
73. Surendran S. et al., LC-MS/MS quantification of saxagliptin + dapagliflozin in plasma — example of combination drug bioanalysis and method sensitivity.
74. Recent stability-indicating RP-HPLC and UPLC papers (2023–2025) demonstrating forced degradation, method validation and application to formulations — see representative articles.

Most read articles by the same author(s)

1 2 3 4 5 6 > >>