EVALUATION OF BACILLUS SPP. FOR PHOSPHATE SOLUBILIZATION AND PLANT GROWTH PROMOTION PRATIBHA
Main Article Content
Keywords
PGPR, rhizospheric soil, phosphate solubilizing efficacy, IAA, ammonia production, Hydrogen cyanide, Bacillus sp. PGPR-1
Abstract
Plant growth-promoting rhizobacteria (PGPR) represent a group of free-living bacteria inhabiting the rhizospheric soil and improving plant growth. These PGPRs have a dynamic role in plant growth by serving as bio-fertilizers. Therefore, we focused the present research investigation on isolating and characterizing phosphate solubilization and PGPR-producing rhizobacteria. Twenty-two bacteria were isolated, from which three bacteria belong to Bacillus spp. and were shown PGPR activity. We examined phosphate solubilizing efficacy, ammonia secretion, hydrogen cyanide production, and IAA production to evaluate the PGPR efficacy of bacterial isolates. Bacillus sp. PGPR-1 exhibited significant phosphate solubilization (2.4 ±0.039 mm ±SD zone diameter) and IAA (16.2 ±0.12 µg/mL ±SD) production along with ammonia and hydrogen cyanide secretion. Bacillus sp. PGPR-1 has potentially been used as an additives to fortify bio-fertilizer for sustainable agricultural management.
References
2. Adnan, N, Nordin, S. & Anwar, A. (2020). Transition pathways for Malaysian paddy farmers to sustainable agricultural practices: An integrated exhibiting tactics to adopt Green fertilizer. Land use policy, 90, 104255. https://doi.org/10.1016/j.landusepol.2019.104255
3. Aeron, A., Khare, E., Jha, C.K., Meena, V.S., Aziz, S.M.A., Islam, M.T. & Rajashekara, H. (2020). Revisiting the plant growth-promoting rhizobacteria: lessons from the past and objectives for the future. Archives
4. Basu, A, Prasad, P., Das, S.N., Kalam, S., Sayyed, R., Reddy, M. & El Enshasy, H. (2021). Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability, 13(3), 1140. https://doi.org/10.3390/su13031140 Chen, S., Cade-Menun, B. J., Bainard, L. D., St. Luce, M., Hu, Y., & Chen, Q. (2021). The influence of long-term N and P fertilization on soil P forms and cycling in a wheat/fallow cropping system. Geoderma, 404(115274), 115274. https://doi.org/10.1016/j.geoderma.2021.115274
5. Ehmann, A. (1977). The Van Urk-Salkowski reagent-a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. Journal of Chromatography. 132, 267-276.
6. Garrity, G.M., Brenner, D.J., Krieg, N., Staley, J. & Manual, B.S. (2005). Systematic bacteriology.
7. The Proteobacteria, Part C: The Alpha-, Beta-, Delta-, and Epsiloproteobacteria, Bergey’s Manual Trust, Department of Microbiology and Molecular Genetics. Springer USA P2.
8. Gouda, S., Kerry, R.G., Das, G., Paramithiotis, S., Shin, H.S. & Patra, J.K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 206, 131-140. https://doi.org/10.1016/j.micres.2017.08.01
9. Gutierrez-Manero, F.J., Ramos-Solano, B., Probanza, A., Mehouachi, J., Tadeo, F.R. & Talon, M. (2001). The plant-growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant, 111, 206–211.
10. Hashemnejad, F., Barin, M., Khezri, M., Ghoosta, Y. & Hammer, E.C. (2021). Isolation and identification of insoluble zinc-solubilising bacteria and evaluation of their ability to solubilise various zinc minerals. Journal of soil science and plant nutrition, 21(3), 2501-2509. https://doi.org/10.1007/s42729-021-00540-x
11. Joo, G.J., Kim,Y.M., Lee, I.J., Song, K.S. & Rhee, I.K. (2004). Growth promotion of red pepper plugseedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus. Biotechnol Lett., 26, 487–491.
12. Kaloterakis, N, van Delden, S.H., Hartley, S. & De Deyn, G.B. (2021). Silicon application and plant growth promoting rhizobacteria consisting of six pure Bacillus species alleviate salinity stress in cucumber (Cucumis sativus L). Scientia Horticulturae, 288, 110383.
https://doi.org/10.1016/j.scienta.2021.110383
13. Kashyap, B.K., Solanki, M.K., Pandey, A.K., Prabha, S., Kumar, P. & Kumari, B. (2019). Bacillus as plant growth promoting rhizobacteria (PGPR): a promising green agriculture technology Plant health under biotic stress. Springer, pp. 219-236. https://doi.org/10.1007/978-981-13-6040-4_11
14. Kaymak, H.C. (2010). Potential of PGPR in Agricultural Innovations. In: Maheshwari, D. (eds) Plant Growth and Health Promoting Bacteria. Microbiology Monographs, vol, 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13612-2_3
15. Kumar, A., Patel, J., Meena, V.S. & Ramteke, P. (2019). Plant growth-promoting rhizobacteria:
strategies to improve abiotic stresses under sustainable agriculture. Journal of Plant Nutrition, 42 (11-12),1402-1415. https://doi.org/10.1080/01904167.2019.1616757
16. Mazumdar, D., Saha, S.P. & Ghosh, S. (2020). Isolation, screening and application of a potent PGPR for enhancing growth of Chickpea as affected by nitrogen level. International Journal of
Vegetable Science, 26(4), 333-350. https://doi.org/10.1080/19315260.2019.1632401
17. Mohanty, P., Singh, P.K., Chakraborty, D., Mishra, S. & Pattnaik, R. (2021). Insight into the role of PGPR in sustainable agriculture and environment. Frontiers in Sustainable Food Systems, 5, 667150. https://doi.org/10.3389/fsufs.2021.667150
18. Mohite, B. (2013). Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of soil science and plant nutrition,
13(3), 638-649. http://dx.doi.org/10.4067/S0718-95162013005000051
19. Molnár, K., Nyárádi, I.I., Bíró-Janka, B., Simó, I., Bálint, J. & Domokos, E. (2020). Preliminary
Study of the Effect of Chemical and Organic Fertilizers on a Semi-Natural Grassland in Vlăhiţa,
20. Harghita Mountains, Romania. Acta Biologica Marisiensis, 3(2), 56-65.
https://doi.org/10.2478/abmj-2020-0011
21. Mustafa, S., Kabir, S., Shabbir, U. & Batool, R. (2019). Plant growth promoting rhizobacteria in sustainable agriculture: from theoretical to pragmatic approach. Symbiosis, 78(2), 115-123. https://doi.org/10.1007/s13199-019-00602-w
22. Nazir, N., Kamili, A.N. & Shah, D. (2018). Mechanism of plant growth promoting rhizobacteria (PGPR) in Enhancing plant growth: A review. Int. J. Manag. Technol. Eng., 8, 709-721.
23. Nicolopoulou-Stamati, P., Maipas, S, Kotampasi, C, Stamatis, P, & Hens, L. (2016). Chemical pesticides and human health: the urgent need for a new concept in agriculture. Frontiers in public health, 4, 148. https://doi.org/10.3389/fpubh.2016.00148
24. of microbiology, 202(4), 665-676. https://doi.org/10.1007/s00203-019-01779-w Pathak, D., Lone, R., Khan, S. & Koul, K. (2019). Isolation, screening and molecular characterization of free-living bacteria of potato (Solanum tuberosum L.) and their interplay impact on growth and production of potato plant under mycorrhizal association. Scientia Horticulturae, 252, 388-397. https://doi.org/10.1016/j.scienta.2019.02.072
25. Péterfi, O, & Domokos, E. (2018). Mutualistic and Endophytic Microorganisms of: Description, Role and Use. Acta Biologica Marisiensis, 1(2), 5-21. https://doi.org/10.2478/abmj-2018-0009
26. Prasad, M., Srinivasan, R., Chaudhary, M., Choudhary, M. & Jat, L.K. (2019). Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture: perspectives and challenges. PGPR amelioration in sustainable agriculture, 2, 129-157. https://doi.org/10.1016/B978-0-12-8158791.00007-0
27. Rai, P.K., Singh, M., Anand, K., Saurabh, S., Kaur, T., Kour, D. & Kumar, M. (2020). Role and Potential Applications of plant growth-promoting rhizobacteria for Sustainable Agriculture. New and Future Developments in Microbial Biotechnology and Bioengineering, pp. 49-60. Elsevier. https://doi.org/10.1016/B978-0-12-820526-6.00004-X
28. Rani, L., Thapa, K., Kanojia, N., Sharma, N., Singh, S., Grewal, A. S. & Kaushal, J. (2021). An extensive review on the consequences of chemical pesticides on human health and environment. Journal of Cleaner Production, 283, 124657. https://doi.org/10.1016/j.jclepro.2020.124657
29. Sabarwal, A., Kumar, K. & Singh, R.P. (2018). Hazardous effects of chemical pesticides on human health–Cancer and other associated disorders. Environmental toxicology and pharmacology, 63, 103-114. https://doi.org/10.1016/j.etap.2018.08.018
30. Sansinenea, E. (2019). Bacillus spp. as plant growth-promoting bacteria: Secondary metabolites of plant growth promoting rhizomicroorganisms. pp. 225-237, Springer. https://doi.org/10.1007/978981-13-5862-3_11
31. Saritha, M., & Prasad Tollamadugu, N.V.K.V. (2019). The status of research and application of biofertilizers and biopesticides: Global scenario. Recent Developments in Applied Microbiology and Biochemistry, 195–207. https://doi.org/10.1016/B978-0-12-816328-3.00015-5
32. Saxena, A., Kumar, M., Chakdar, H., Anuroopa, N. & Bagyaraj, D. (2020). Bacillus species in soil as a natural resource for plant health and nutrition. Journal of applied microbiology, 128(6), 15831594. https://doi.org/10.1111/jam.14506
33. Sehrawat, A., Sindhu, S.S, & Glick, B.R. (2022). Hydrogen cyanide production by soil bacteria: Biological control of pests and promotion of plant growth in sustainable agriculture. Pedosphere,
32(1), 15-38. https://doi.org/10.1016/S1002-0160(21)60058-9
34. Sharma, N. & Singhvi, R. (2017). Effects of chemical fertilizers and pesticides on human health and environment: a review. International journal of agriculture, environment and biotechnology,
35. 10(6), 675-680. https://doi.org/10.5958/2230-732X.2017.00083.3 Somers, E., Vanderleyden, J. & Srinivasan, M. (2004). Rhizosphere bacterial signalling: a love parade beneath our feet. Crit. Rev. Microbiol., 30, 205–240.
36. Tang, A., Haruna, A.O., Majid, N.M.A. & Jalloh, M.B. (2020). Potential PGPR properties of cellulolytic, nitrogen-fixing, phosphate-solubilizing bacteria in rehabilitated tropical forest soil. Microorganisms, 8(3), 442. https://doi.org/10.3390/microorganisms8030442
37. Wang, Y., Peng, S., Hua, Q., Qiu, C., Wu, P., Liu, X. & Lin, X. (2021). The long-term effects of using phosphate-solubilizing bacteria and photosynthetic bacteria as biofertilizers on peanut yield and soil bacteria community. Frontiers in Microbiology, 3, 12-18. https://doi.org/10.3389/fmicb.2021.693535
