THE DYSREGULATED EXPRESSION OF THE P53 GENE IS ASSOCIATED WITH POOR PROGNOSIS IN CEBPA MUTANT ACUTE MYELOID LEUKEMIA PATIENTS

Main Article Content

Muhammad Husain
Ayesha Aihetasham
Afia Muhammad Akram
Sabrina waheed
Rafia Tabassum
Salma Ashraf
Asma Iqbal
Syed Shamsheer Abbas Ali Shah
Anam Mobeen
Ghulam Fatima Saleem

Keywords

Acute myeloid leukemia, p53 gene, gene expression

Abstract

The main objective of the current investigation is to examine the influence of altered p53 gene expression on the prognosis in CEBPA mutant acute myeloid leukemia (AML) patients. AML is a heterogeneous disorder that arises due to acquired genetic anomalies such as CEBPA and TP53. The CEBPA transcription factor plays a critical role in the differentiation of specific blood cells, while the p53 gene functions as a protector of the genome, preventing the development of tumors and regulating various genes involved in cell cycle arrest, DNA repair and programmed cell death. Nevertheless, there is a paucity of comprehensive data concerning the evaluation of p53 expression, which is the resultant of the p53 gene, particularly in hematologic malignancies. In this research investigation, a cohort of thirty individuals diagnosed with AML and twenty-five healthy control participants, who granted informed consent, were enrolled. The evaluation of p53 expression levels was carried out through quantitative Real-time PCR (qRT-PCR). Statistical assessments were performed utilizing one-way ANOVA and Tukey test, facilitated by GraphPad Prism software version 9.0.0. The p53wt/CEBPAmut group (0.20 ± 0.032 SEM) and p53mut/CEBPAmut group (0.06 ± 0.011 SEM) demonstrated a significant decrease in p53 expression compared to the control group (1.00 ± 0.010 SEM) with statistical significance (p<0.0001) for both comparisons respectively. Furthermore, the p53mut/CEBPAmut group exhibited a significantly lower level of p53 expression (p<0.01) when contrasted with the p53wt/CEBPAmut group. In relation to both the overall survival and event-free survival results, a univariate analysis indicated a statistically significant variance in overall survival (p=0.0299, HR = 3.401) and event-free survival (p=0.0128, HR = 3.002) between individuals with p53wt/CEBPAmut and p53mut/CEBPAmut.

Abstract 93 | PDF Downloads 31

References

1. Ahmadzadeh, A., Mohammadi, M.H., Mezginezhad, F., Nezhad, H.A., Parkhideh, S., Khosravi, M., Khazaei, Z., Adineh, H.A. and Farsani, M.A., 2018. The expression of the P53 gene in various classes of acute myeloid leukemia. WCRJ, 5, 1178.
2. Ali, A., Manzoor, M. F., Ahmad, N., Aadil, R. M., Qin, H., Siddique, R., ... and Aizhong, L. (2022). The burden of cancer, government strategic policies, and challenges in Pakistan: A comprehensive review. Frontiers in nutrition, 9, 940514.
3. Al-Joudi, F.S., Iskandar, Z.A. and Rusli, J., 2008. The expression of p53 in invasive ductal carcinoma of the breast: a study in the North-East States of Malaysia. Med J Malaysia, 63, 96-9.
4. Alshemmari, S. H., Almazyad, M., Ram, M., John, L. M., and Alhuraiji, A. (2022). Epidemiology of de novo Acute Myeloid Leukemia in Kuwait per the 2016 WHO Classification. Medical Principles and Practice, 31, 284-292.
5. Arber, D. A. (2019, April). The 2016 WHO classification of acute myeloid leukemia: What the practicing clinician needs to know. In Seminars in hematology (Vol. 56, No. 2, 90-95). WB Saunders.
6. Baugh, E. H., Ke, H., Levine, A. J., Bonneau, R. A., and Chan, C. S. (2018). Why are there hotspot mutations in the TP53 gene in human cancers?. Cell Death and Differentiation, 25(1), 154-160.
7. Beaton, M., Peterson, G. J., and O’Brien, K. (2020). Acute myeloid leukemia: advanced practice management from presentation to cure. Journal of the Advanced Practitioner in Oncology, 11, 836.
8. Bellodi, C., Kindle, K., Bernassola, F., Cossarizza, A., Dinsdale, D., Melino, G., Heery, D. and Salomoni, P., 2006. A cytoplasmic PML mutant inhibits p53 function. Cell Cycle, 5, 2688-2692.
9. Bernard, P.S. and Wittwer, C.T., 2002. Real-time PCR technology for cancer diagnostics. Clinical chemistry, 48, 1178-1185.
10. Bossi, G., Lapi, E., Strano, S., Rinaldo, C., Blandino, G. and Sacchi, A., 2006. Mutant p53 gain of function: reduction of tumor malignancy of human cancer cell lines through abrogation of mutant p53 expression. Oncogene, 25, 304-309.
11. Cacace, F., Iula, R., De Novellis, D., Caprioli, V., D’amico, M. R., De Simone, G., ... and Tambaro, F. P. (2022). High-risk acute myeloid leukemia: a pediatric prospective . Biomedicines, 10, 1405.
12. Chianese, U., Papulino, C., Megchelenbrink, W., Tambaro, F. P., Ciardiello, F., Benedetti, R., and Altucci, L. (2023, March). Epigenomic machinery regulating pediatric AML: clonal expansion mechanisms, therapies, and future perspectives. In Seminars in Cancer Biology. Academic Press.
13. Colombo, E., Marine, J.C., Danovi, D., Falini, B. and Pelicci, P.G., 2002. Nucleophosmin regulates the stability and transcriptional activity of p53. Nature cell biology, 4, 529-533.
14. Davoodi, M., Bahadoram, S., Bahadoram, M., Barahman, M., Khazaei, Z. and Amiri, M., 2018. Impact of cancers on the kidney function and structure; an ignored entity. Journal of Renal Injury Prevention, 7, 112-115.
15. Döhner, H., Estey, E., Grimwade, D., Amadori, S., Appelbaum, F. R., Büchner, T., ... and Bloomfield, C. D. (2017). Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood, The Journal of the American Society of Hematology, 129, 424-447.
16. Dozzo, A., Galvin, A., Shin, J. W., Scalia, S., O’Driscoll, C. M., and Ryan, K. B. (2023). Modelling acute myeloid leukemia (AML): What’s new? A transition from the classical to the modern. Drug Delivery and Translational Research, 13, 2110-2141.
17. Fu, L., Huang, W., Jing, Y., Jiang, M., Zhao, Y., Shi, J., and Yu, L. (2014). AML 1–ETO triggers epigenetic activation of early growth response gene l, inducing apoptosis in t (8; 21) acute myeloid leukemia. The FEBS journal, 281(4), 1123-1131.
18. George, B., Kantarjian, H., Baran, N., Krocker, J. D., and Rios, A. (2021). TP53 in acute myeloid leukemia: molecular aspects and patterns of mutation. International journal of molecular sciences, 22, 10782.
19. Ghafoor, T., Khalil, S., Farah, T., Ahmed, S., and Sharif, I. (2020). Prognostic factors in childhood acute myeloid leukemia; experience from a developing country. Cancer Reports, 3, 1259.
20. Goudarzipour, K., Ahmadzadeh, A. and Mohammadi, M.H., 2017. Changes of AML 1 and P53 tumor suppressor gene expression in patients de novo acute myeloid leukemia. Archives of Advances in Biosciences, 8, 39-45.
21. Granowicz, E.M. and Jonas, B.A., 2022. Targeting TP53-mutated acute myeloid leukemia: research and clinical developments. OncoTargets and therapy, 423-436.
22. Green, D.R. and Kroemer, G., 2009. Cytoplasmic functions of the tumour suppressor p53. Nature, 458, 1127-1130.
23. Grob, T., Al Hinai, A. S., Sanders, M. A., Kavelaars, F. G., Rijken, M., Gradowska, P. L., ... and Valk, P. J. (2022). Molecular characterization of mutant TP53 acute myeloid leukemia and high-risk myelodysplastic syndrome. Blood, The Journal of the American Society of Hematology, 139, 2347-2354.
24. Haferlach, C., Dicker, F., Herholz, H., Schnittger, S., Kern, W. and Haferlach, T., 2008. Mutations of the P53 gene in acute myeloid leukemia are strongly associated with a complex aberrant karyotype. Leukemia, 22, 1539-1541.
25. Hajian, S., 2017. MicroRNAs in nephrology; new concepts. Immunopathologia Persa, 4.
26. Kayser, S. and Levis, M.J., 2023. The clinical impact of the molecular landscape of acute myeloid leukemia. Haematologica, 108, 308.
27. Kwon, N., Lee, K.E., Singh, M. and Kang, S.G., 2021. Suitable primers for GAPDH reference gene amplification in quantitative RT-PCR analysis of human gene expression. Gene Reports, 24, 101272.
28. Li, X.L., Zhou, J., Chen, Z.R. and Chng, W.J., 2015. P53 mutations in colorectal cancer-molecular pathogenesis and pharmacological reactivation. World journal of gastroenterology: WJG, 21, 84.
29. Livak, K.J. and Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods, 10, 402-408.
30. Lukas, J., Niu, N. and Press, M.F., 2000. p53 mutations and expression in breast carcinoma in situ. The American journal of pathology, 156, 183-191.
31. Marei, H. E., Althani, A., Afifi, N., Hasan, A., Caceci, T., Pozzoli, G., ... and Cenciarelli, C. (2021). p53 signaling in cancer progression and therapy. Cancer cell international, 21(1), 703.
32. Mitas, M., Mikhitarian, K., Walters, C., Baron, P.L., Elliott, B.M., Brothers, T.E., Robison, J.G., Metcalf, J.S., Palesch, Y.Y., Zhang, Z. and Gillanders, W.E., 2001. Quantitative real‐time RT‐PCR detection of breast cancer micrometastasis using a multigene marker panel. International journal of cancer, 93, 162-171.
33. Nikzad, S., Mahmoudi, G., Amini, P., Baradaran-Ghahfarokhi, M., Vahdat-Moaddab, A., Sharafi, S.M., Hojaji-Najafabadi, L. and Hosseinzadeh, A., 2017. Effects of radiofrequency radiation in the presence of gold nanoparticles for the treatment of renal cell carcinoma. Journal of renal injury prevention, 6, 103.
34. Pei, H.Z., Peng, Z., Zhuang, X., Wang, X., Lu, B., Guo, Y., Zhao, Y., Zhang, D., Xiao, Y., Gao, T. and Yu, L., 2023. miR-221/222 induce instability of p53 By downregulating deubiquitinase YOD1 in acute myeloid leukemia. Cell Death Discovery, 9, 249.
35. Peller, S. and Rotter, V., 2003. P53 in hematological cancer: low incidence of mutations with significant clinical relevance. Human mutation, 21, 277-284.
38. Rahmé, R., Braun, T., Manfredi, J.J. and Fenaux, P., 2023. TP53 Alterations in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Biomedicines, 11, 1152.
39. Récher, C., Röllig, C., Bérard, E., Bertoli, S., Dumas, P. Y., Tavitian, S., ... and Montesinos, P. (2022). Long-term survival after intensive chemotherapy or hypomethylating agents in AML patients aged 70 years and older: a large patient data set study from European registries. Leukemia, 36, 913-922.
40. Sadia, H., Bhinder, M.A., Irshad, A., Zahid, B., Ahmed, R., Ashiq, S., Malik, K., Riaz, M., Nadeem, T., Ashiq, K. and Akbar, A., 2020. Determination of expression profile of p53 gene in different grades of breast cancer tissues by real time PCR. African Health Sciences, 20, 1273-1282.
41. Seipel, K., Marques, M.T., Bozzini, M.A., Meinken, C., Mueller, B.U. and Pabst, T., 2016. Inactivation of the p53–KLF4–CEBPA axis in acute myeloid leukemia. Clinical cancer research, 22, 746-756.
42. Seo, W., Silwal, P., Song, I. C., and Jo, E. K. (2022). The dual role of autophagy in acute myeloid leukemia. Journal of hematology and oncology, 15, 51.
43. Shakweer, M.M. and El-Sheshtawy, N.M., 2017. Emerging role of Treg FOXP3 expression in cancer prognosis and autoimmune diseases. Immunopathol Persa, 3, 01.
44. Shallis, R. M., Wang, R., Davidoff, A., Ma, X., and Zeidan, A. M. (2019). Epidemiology of acute myeloid leukemia: Recent progress and enduring challenges. Blood reviews, 36, 70-87.
45. Shikami, M., Miwa, H., Nishii, K., Kyo, T., Tanaka, I., Shiku, H., Kita, K. and Nitta, M., 2006. Low p53 expression of acute myelocytic leukemia cells with t (8; 21) chromosome abnormality: Association with low p14ARF expression. Leukemia Research, 30, 379-383.
46. Stubbins, R. J., Francis, A., Kuchenbauer, F., and Sanford, D. (2022). Management of acute myeloid leukemia: a review for general practitioners in oncology. Current oncology, 29, 6245-6259.
47. Sultan, S., Irfan, S. M., Ali, N., and Nawaz, N. (2018). Institutional-based tumor registry of hematopoietic malignancies: A 4 years’ preliminary report from Karachi. Journal of laboratory physicians, 10, 168-172.
48. Tislevoll, B. S., Hellesøy, M., Fagerholt, O. H. E., Gullaksen, S. E., Srivastava, A., Birkeland, E., and Gjertsen, B. T. (2023). Early response evaluation by single cell signaling profiling in acute myeloid leukemia. Nature communications, 14, 115.
49. Vago, L., and Gojo, I. (2020). Immune escape and immunotherapy of acute myeloid leukemia. The Journal of clinical investigation, 130, 1552-1564.
50. Wakita, S., Sakaguchi, M., Oh, I., Kako, S., Toya, T., Najima, Y., Doki, N., Kanda, J., Kuroda, J., Mori, S. and Satake, A., 2022. Prognostic impact of CEBPA bZIP domain mutation in acute myeloid leukemia. Blood Advances, 6, 238-247.
51. Yi, M., Li, A., Zhou, L., Chu, Q., Song, Y., and Wu, K. (2020). The global burden and attributable risk factor analysis of acute myeloid leukemia in 195 countries and territories from 1990 to 2017: estimates based on the global burden of disease study 2017. Journal of hematology and oncology, 13, 1-16.