ASSESSMENT OF MICRORNA-182 AND MICRORNA-133 AS NON-INVASIVE PREDICTORS OF BREAST CANCER IN PAKISTAN

Main Article Content

Pardeep Kumar
Riaz Gul
Amber Shami
Humaira Ansari
Maliha Yaseen
Sadia Arif

Keywords

Breast cancer, heterogenous disease, miRNA, non-invasive predictors

Abstract

Background: Breast cancer is a diverse heterogeneous disease and it has become difficult to track the progression of breast cancer. It has been reported that miRNAs play a role in therapeutic targets and diagnostic markers.


Methods: In the study, the expression levels of miRNA-182, and miRNA-133 were assessed of total 292 patients through purposive sampling in one of the public hospitals of Pakistan. Out of which 165 were cases and 127 were controls.


Results: The results of the study revealed that in both groups the levels of miRNA-182 and miRNA-133 expression levels were assessed. Hence the expression levels of miRNA-182, in both groups were similar in terms of age, status of menopause, and BMI. The patients suffering from breast cancer expressed more miRNA-133 than the control group did, and there were notable differences between the two groups when it came to older age, status of menopause, and BMI (obesity). A sensitivity of 94.1%, specificity of 100%, positive predictive value of 100 %, and negative predictive value of 80.81% were obtained for miRNA-133 levels. These findings suggested that miRNA-133 possessed strong predictive power. A sensitivity of 74.52%, specificity of 100%, positive predictive value of 100%, and negative predictive value of 59.38% were obtained for miRNA-182.


Conclusion: The study concludes that the function of miRNA-182 and miRNA-133 are considered As Non-Invasive Predictors in the course and outcome of Breast Cancer.

Abstract 229 | pdf Downloads 104

References

1. Yu S, Wei Y, Xu Y, Zhang Y, Li J, Zhang J. Extracellular vesicles in breast cancer drug resistance and their clinical application. Tumor Biology. 2016 Mar; 37:2849-61. http://doi:10.1007/s13277-015-4683-5. Epub 2016 Jan 21. PMID: 26797784
2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018 Nov;68(6):394-424. http://doi:10.3322/ caac.21492. Epub 2018 Sep 12. Erratum in: CA Cancer J Clin. 2020 Jul;70(4):313. PMID: 30207593.
3. Baliu-Piqué M, Padilla A, Ocana A. Breast cancer heterogeneity and response to novel therapeutics. Cancers. 2020 Nov 5;12(11):3271. http://doi:10.3390/cancers12113271. PMID: 33167363; PMCID: PMC7694303
4. Bartel DP. Metazoan microRNAs. Cell. 2018 Mar 22;173(1):20-51. http://doi:10.1016/ j.cell.2018.03.006. PMID: 29570994; PMCID: PMC6091663
5. Dexheimer PJ, Cochella L. MicroRNAs: from mechanism to organism. Frontiers in cell and developmental biology. 2020 Jun 3;8: 409. http://doi:10.3389/fcell.2020.00409. PMID: 32582699; PMCID: PMC7283388.
6. Gurtner A, Falcone E, Garibaldi F, Piaggio G. Dysregulation of microRNA biogenesis in cancer: the impact of mutant p53 on Drosha complex activity. Journal of Experimental & Clinical Cancer Research. 2016 Dec;35(1):1-9. http://doi:10.1186/s13046-016-0319-x. PMID: 26971015; PMCID: PMC4789259
7. Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal transduction and targeted therapy. 2016 Jan 28;1(1):1-9. http://doi:10.1038/sigtrans.2015.4. PMID: 29263891; PMCID: PMC5661652.
8. Zhang JE. microRNA: emerging biomarkers in human disease and profiling challenges. The Biochemist. 2016 Apr 1;38(2):26-9.
9. Kim D, Sung YM, Park J, Kim S, Kim J, Park J, Ha H, Bae JY, Kim S, Baek D. General rules for functional microRNA targeting. Nature genetics. 2016 Dec;48(12):1517-26.
http://doi:10.1038/ng.3694. Epub 2016 Oct 24. PMID: 27776116.
10. Cheerla N, Gevaert O. MicroRNA based pan-cancer diagnosis and treatment recommendation. BMC bioinformatics. 2017 Dec;18(1):1-1. http://doi:10.1186/s12859-016-1421-y. PMID: 28086747; PMCID: PMC5237282
11. Li J, Guan X, Fan Z, Ching LM, Li Y, Wang X, Cao WM, Liu DX. Non-invasive biomarkers for early detection of breast cancer. Cancers. 2020 Sep 27;12(10):2767. http://doi:10.3390/ cancers12102767. PMID: 32992445; PMCID: PMC7601650
12. Petri BJ, Klinge CM. Regulation of breast cancer metastasis signaling by miRNAs. Cancer and metastasis reviews. 2020 Sep; 39:837-86. http://doi:10.1007/s10555-020-09905-7. PMID: 32577859; PMCID: PMC7487050.
13. Salzman DW, Nakamura K, Nallur S, Dookwah MT, Metheetrairut C, Slack FJ, Weidhaas JB. miR-34 activity is modulated through 5′-end phosphorylation in response to DNA damage. Nature communications. 2016 Mar 21;7(1):10954. http://doi:10.1038/ncomms10954. PMID: 26996824; PMCID: PMC4802117
14. Armand-Labit V, Pradines A. Circulating cell-free microRNAs as clinical cancer biomarkers. Biomolecular concepts. 2017 May 24;8(2):61-81. http://doi:10.1515/bmc-2017-0002. PMID: 28448269.
15. Motawi TM, Sadik NA, Shaker OG, El Masry MR, Mohareb F. Study of microRNAs-21/221 as potential breast cancer biomarkers in Egyptian women. Gene. 2016 Sep 30;590(2):210-9. http://doi:10.1016/j.gene.2016.01.042. Epub 2016 Jan 29. PMID: 26827795
16. Detassis S, Grasso M, Del Vescovo V, Denti MA. microRNAs make the call-in cancer personalized medicine. Frontiers in cell and developmental biology. 2017 Sep 22;5:86. http://doi:10.3389/fcell.2017.00086. PMID: 29018797; PMCID: PMC5614923
17. Salzman DW, Nakamura K, Nallur S, Dookwah MT, Metheetrairut C, Slack FJ, Weidhaas JB. miR-34 activity is modulated through 5′-end phosphorylation in response to DNA damage. Nature communications. 2016 Mar 21;7(1):10954. http://doi:10.1038/ncomms10954. PMID: 26996824; PMCID: PMC4802117
18. Tao S, Liu YB, Zhou ZW, Lian B, Li H, Li JP, Zhou SF. miR-3646 promotes cell proliferation, migration, and invasion via regulating G2/M transition in human breast cancer cells. American Journal of Translational Research. 2016;8(4):1659. PMID: 27186291; PMCID: PMC4859896
19. Zuo Z, Ye F, Liu Z, Huang J, Gong Y. MicroRNA 153 inhibits cell proliferation, migration, invasion, and epithelial-mesenchymal transition in breast cancer via direct targeting of RUNX2. Experimental and therapeutic medicine. 2019 Jun 1;17(6):4693-702.
http://doi:10.3892/etm.2019.7470. Epub 2019 Apr 5. PMID: 31086603; PMCID: PMC6488978
20. Wang H, Chen SH, Kong P, Zhang LY, Zhang LL, Zhang NQ, Gu H. Increased expression of miR-330-3p: a novel independent indicator of poor prognosis in human breast cancer. Eur Rev Med Pharmacol Sci. 2018 Mar 1;22(6):1726-30. http://doi:10.26355/eurrev_201803_14587. PMID: 29630118
21. Missiaglia E, Shepherd CJ, Aladowicz E, Olmos D, Selfe J, Pierron G, Delattre O, Walters Z, Shipley J. MicroRNA and gene co-expression networks characterize biological and clinical behavior of rhabdomyosarcomas. Cancer letters. 2017 Jan 28; 385:251-60. http://doi:10.1016/ j.canlet.2016.10.011. Epub 2016 Oct 29. PMID: 27984116; PMCID: PMC5157784.
22. Yu S, Xie H, Zhang J, Wang D, Song Y, Zhang S, Zheng S, Wang J. MicroRNA 663 suppresses the proliferation and invasion of colorectal cancer cells by directly targeting FSCN1. Molecular medicine reports. 2017 Dec 1;16(6):9707-14. http://doi:10.3892/mmr.2017.7794. Epub 2017 Oct 17. PMID: 29039557.
23. Jang JY, Kim YS, Kang KN, Kim KH, Park YJ, Kim CW. Multiple microRNAs as biomarkers for early breast cancer diagnosis. Molecular and clinical oncology. 2021 Feb 1;14(2):1-. http://doi:10.3892/mco.2020.2193. Epub 2020 Dec 17. PMID: 33414912; PMCID: PMC7783718
24. Hagrass HA, Sharaf S, Pasha HF, Tantawy EA, Mohamed RH, Kassem R. Circulating microRNAs-a new horizon in molecular diagnosis of breast cancer. Genes & cancer. 2015 May;6(5-6):281. http://doi:10.18632/genesandcancer.66. PMID: 26124926; PMCID: PMC 4482248
25. Beňačka R, Szabóová D, Guľašová Z, Hertelyová Z, Radoňák J. Classic and new markers in diagnostics and classification of breast cancer. Cancers. 2022 Nov 5;14(21):5444. http://doi:10.3390/cancers14215444. PMID: 36358862; PMCID: PMC9654192.

Most read articles by the same author(s)