TRENDS IN LIPID PROFILE AND TRACE ELEMENTS IN METABOLIC SYNDROME

Main Article Content

Dr. Sunita Singh
Dr. Sushma BJ

Keywords

metabolic syndrome, lipid profile, trace elements, copper, zinc and iron.

Abstract

Introduction


Metabolic Syndrome (MetS) is a complex, multifaceted disorder characterized by a cluster of interconnected cardiovascular and metabolic risk factors. Derangements in lipid metabolism (hyperlipoproteinemias) and trace elements play crucial roles development of metabolic syndrome. The objective of the present study is to determine lipid profile patterns and trace element levels (copper, zinc, and iron) in subjects with MetS and without MetS.


Methods


A comparative cross-sectional study included 90 subjects with MetS and 90 subjects without MetS. Fasting venous blood sample was collected and analysed for the quantitative estimation of Lipid profile parameters (total cholesterol, triglycerides, LDL, HDL, VLDL), copper, zinc, and iron levels in fully automated dry chemistry analyser Vitros 5600 as per manufactures instructions.


Results
In the present study we found altered lipid profile parameters and trace elements levels (copper, zinc and iron) in subjects with MetS in contrast to subjects without MetS. The lipid alterations mainly included hypercholesterolemia, hypertriglyceridemia, elevated low density lipoproteins and decreased high density lipoproteins in MetS and also the trace elements showed significantly higher concentrations in MetS.


Conclusion
This study highlights the importance of considering lipid profiles and trace element levels in the diagnosis and management of MetS. Monitoring lipid profile, iron, copper, and zinc levels will aid in identifying individuals at possibility of progressing to MetS or its components. Early therapeutic interventions for hyperlipoproteinemias and addressing trace element imbalances through dietary modifications or supplementation may be a useful adjunctive therapy in managing MetS. Additional investigation is required to illuminate the mechanisms fundamental to trace element dysregulation in MetS and to explore potential therapeutic applications.

Abstract 31 | pdf Downloads 10

References

1. Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018;20(12):1–8. doi: 10.1007/s11906-018-0812-z
2. Halpern A, Mancini MC, Magalhães MEC, et al. Metabolic syndrome, dyslipidemia, hypertension and type 2 diabetes in youth: from diagnosis to treatment. Diabetol Metab Syndr. 2010;2(55):1–20. doi: 10.1186/1758-5996-2-55
3. Rochlani Y, Pothineni NV, Kovelamudi S, Mehta JL. Metabolic syndrome: pathophysiology, management, and modulation by natural compounds. Ther Adv Cardiovasc Dis. 2017;11(8):215–225. doi: 10.1177/1753944717711379
4. Mccracken E, Monaghan M, Sreenivasan S. Pathophysiology of the metabolic syndrome. Clin Dermatol. 2018;36(1):14–20. doi: 10.1016/j.clindermatol.2017.09.004
5. Lee M, Han K, Kim MK, Koh ES, Kim ES. Changes in metabolic syndrome and its components and the risk of type 2 diabetes: a Nationwide Cohort Study. Sci Rep. 2020;10:1–8.
6. Blaton VH, Korita I, Bulo A. How is a metabolic syndrome related to dyslipidemia? Biochem Med. 2008;18(1):14–24. doi: 10.11613/BM.2008.003
7. Kolovou G, Cardiac O, Anagnostopoulou KK. Pathophysiology of dyslipidemia in the metabolic syndrome. Postgrad Med J. 2005;81(956):358–366. doi: 10.1136/pgmj.2004.025601
8. Ruotolo G, Howard BV. Dyslipidemia of the metabolic syndrome. Cardiol Rep. 2002;4(6):494–500. doi: 10.1007/s11886-002-0113-6
9. Olechnowicz J., Tinkov A., Skalny A., Suliburska J. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J. Physiol. Sci. 2018;68:19–31. doi: 10.1007/s12576-017-0571-7
10. Bo S., Durazzo M., Gambino R., Berutti C., Milanesio N., Caropreso A., Gentile L., Cassader M., Cavallo-Perin P., Pagano G. Associations of dietary and serum copper with inflam-mation, oxidative stress, and metabolic variables in adults. J. Nutr. 2008;138:305–310. doi: 10.1093/jn/138.2.305
11. Zhuang T., Han H., Yang Z. Iron, Oxidative Stress and Gestational Diabetes. Nutrients. 2014;6:3968–3980. doi: 10.3390/nu6093968.
12. Samadi A., Isikhan S.Y., Tinkov A.A., Lay I., Doşa M.D., Skalny A.V., Skalnaya M.G., Chirumbolo S., Bjørklund G. Zinc, copper, and oxysterol levels in patients with type 1 and type 2 diabetes mellitus. Clin. Nutr. 2019;39:1849–1856. doi: 10.1016/j.clnu.2019.07.026.
13. Zhang H., Yan C., Yang Z., Zhang W., Niu Y., Li X., Qin L., Su Q. Alterations of serum trace elements in patients with type 2 diabetes. J. Trace Elements Med. Biol. 2017;40:91–96. doi: 10.1016/j.jtemb.2016.12.017.
14. Wolide A.D., Zawdie B., Nigatu T.A., Tadesse S. Association of trace metal elements with lipid profiles in type 2 diabetes mellitus patients: A cross sectional study. BMC Endocr. Disord. 2017;17:64. doi: 10.1186/s12902-017-0217-z.
15. Liu J., Li Q., Yang Y., Ma L. Iron metabolism and type 2 diabetes mellitus: A meta-analysis and systematic review. J. Diabetes Investig. 2020;11:946–955. doi: 10.1111/jdi.13216
16. Fernández-Cao J.C., Warthon-Medina M., HMoran V., Arija V., Doepking C., Serra-Majem L., Lowe N.M. Zinc Intake and Status and Risk of Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Nutrients. 2019;11:1027. doi: 10.3390/nu11051027.
17. Sanjeevi N., Freeland-Graves J., Beretvas S.N., Sachdev P.K. Trace Element Status in Type 2 Diabetes: A Meta-Analysis. J. Clin. Diagn. Res. 2018;12:OE01–OE08. doi: 10.7860/JCDR/2018/35026.11541.
18. Eshak E.S., Iso H., Maruyama K., Muraki I., Tamakoshi A. Associations between dietary intakes of iron, copper and zinc with risk of type 2 diabetes mellitus: A large population-based prospective cohort study. Clin. Nutr. 2018;37:667–674. doi: 10.1016/j.clnu.2017.02.010.
19. Qu R., Jia Y., Liu J., Jin S., Han T., Na L. Dietary Flavonoids, Copper Intake, and Risk of Metabolic Syndrome in Chinese Adults. Nutrients. 2018;10:991. doi: 10.3390/nu10080991.
20. de Oliveira Otto M.C., Alonso A., Lee D.H., Delclos G.L., Bertoni A.G., Jiang R., Lima J.A., Symanski E., Jacobs D.R., Jr., Nettleton J.A. Dietary intakes of zinc and heme iron from red meat, but not from other sources, are associated with greater risk of metabolic syndrome and cardiovascular disease. J. Nutr. 2012;142:526–533. doi: 10.3945/jn.111.149781
21. Leiva E., Mujica V., Sepúlveda P., Guzmán L., Núñez S., Orrego R., Palomo I., Andrews M., Arredondo M. High Levels of Iron Status and Oxidative Stress in Patients with Metabolic Syndrome. Biol. Trace Element Res. 2013;151:1–8. doi: 10.1007/s12011-012-9525-3.
22. Fang C., Wu W., Gu X., Dai S., Zhou Q., Deng H., Shen F., Chen J. Association of serum copper, zinc and selenium levels with risk of metabolic syndrome: A nested case-control study of middle-aged and older Chinese adults. J. Trace Elements Med. Biol. 2019;52:209–215. doi: 10.1016/j.jtemb.2018.12.017.
23. Seo J.-A., Song S.-W., Han K., Lee K.-J., Kim H.-N. The Associations between Serum Zinc Levels and Metabolic Syndrome in the Korean Population: Findings from the 2010 Korean National Health and Nutrition Examination Survey. PLoS ONE. 2014;9:e105990. doi: 10.1371/journal.pone.0105990.
24. Huang PL. A comprehensive definition for metabolic syndrome. Dis Model Mech. 2009 May-Jun;2(5-6):231-7. doi: 10.1242/dmm.001180.
25. Prashant Udgire & N D Karnik : Lipid Profile in Metabolic Syndrome Patients : A Indian Perspective. International Journal of current Medical and Applied sciences; 2017, 13(3), 168-173.
26. Lu CW, Lee YC, Kuo CS, Chiang CH, Chang HH, Huang KC. Association of Serum Levels of Zinc, Copper, and Iron with Risk of Metabolic Syndrome. Nutrients. 2021 Feb 7;13(2):548. doi: 10.3390/nu13020548.
27. Hye-Ja Lee, Han Byul Jang, Ji Eun Park, Kyung-Hee Park, Jae Heon Kang, Sang Ick Park, Jihyun Song, Relationship between Serum Levels of Body Iron Parameters and Insulin Resistance and Metabolic Syndrome in Korean Children, Osong Public Health and Research Perspectives, Volume 5, Issue 4, 2014, Pages 204-210, ISSN 2210-9099, https://doi.org/10.1016/j.phrp.2014.06.005.
28. Liu J., Li Q., Yang Y., Ma L. Iron metabolism and type 2 diabetes mellitus: A meta-analysis and systematic review. J. Diabetes Investig. 2020;11:946–955. doi: 10.1111/jdi.13216.
29. Fang C., Wu W., Gu X., Dai S., Zhou Q., Deng H., Shen F., Chen J. Association of serum copper, zinc and selenium levels with risk of metabolic syndrome: A nested case-control study of middle-aged and older Chinese adults. J. Trace Elements Med. Biol. 2019;52:209–215. doi: 10.1016/j.jtemb.2018.12.017
30. Bozzini C., Girelli D., Olivieri O., Martinelli N., Bassi A., De Matteis G., Tenuti I., Lotto V., Friso S., Pizzolo F., et al. Prevalence of body iron excess in the metabolic syn-drome. Diabetes Care. 2005;28:2061–2063. doi: 10.2337/diacare.28.8.2061