DEVELOPMENT AND EVALUATION OF NANO-HYDROXYAPATITE AND SILICA-REINFORCED DENTAL COMPOSITES: ENHANCING MECHANICAL STRENGTH AND HYDROLYTIC STABILITY
Main Article Content
Keywords
Dental composites, nano-hydroxyapatite, silica, flexural strength, wear resistance, water sorption, mechanical properties, hydrolytic stability.
Abstract
Background: Dental composites are widely used restorative materials; however, their mechanical properties, wear resistance, and hydrolytic stability remain key challenges. Nano-hydroxyapatite (HAp) and silica nanoparticles have shown potential to enhance composite performance by improving strength, durability, and resistance to degradation.
Objective: This study aimed to develop and evaluate novel dental composites incorporating nano-HAp and silica fillers to enhance mechanical strength, wear resistance, and hydrolytic stability.
Methodology: Dental composite samples were fabricated with 0%, 5%, 10%, and 15% nano-HAp-silica filler content. Flexural strength, wear resistance, water sorption, and solubility were assessed following ISO 4049 standards. Mechanical testing was performed at UET Peshawar, and hydrolytic stability was analyzed at Women Dental College, Abbottabad. Statistical analysis was conducted using ANOVA with post-hoc Tukey’s test (p < 0.05).
Results: The incorporation of nano-fillers significantly improved mechanical properties (p < 0.001). Flexural strength increased from 78.5 MPa (control) to 110.8 MPa (15% filler composite), and wear resistance improved with a reduction in material loss from 0.32 mm³ to 0.18 mm³. Water sorption and solubility decreased significantly (p = 0.002), with sorption reduced from 36.8 µg/mm³ to 25.3 µg/mm³ and solubility from 5.2 µg/mm³ to 3.8 µg/mm³, indicating better long-term durability.
Conclusion: Nano-HAp and silica reinforcement significantly enhanced mechanical strength, wear resistance, and hydrolytic stability, making these composites a promising alternative for high-load-bearing dental restorations. Future studies should assess biocompatibility and long-term performance in clinical settings.
References
2. Akbar P, Salahuddin N, Ahmad Z, Shah SZ, Shah F, Maknoon D. Role of Actinomyces species in oral Biofilm Formation and Dental Plaque-Related Diseases. Innovative Research in Applied, Biological and Chemical Sciences. 2024 Jun 30;2(1):120-5. https://doi.org/10.62497/IRABCS.2024.50
3. Guo X, Yu Y, Gao S, Zhang Z, Zhao H. Biodegradation of dental resin-based composite—A potential factor affecting the bonding effect: A narrative review. Biomedicines. 2022 Sep 18;10(9):2313. https://www.mdpi.com/2227-9059/10/9/2313#
4. Fierascu RC. Incorporation of Nanomaterials in Glass Ionomer Cements-Recent Developments and Future Perspectives: A Narrative Review. Nanomaterials (Basel). 2022 Oct 29;12(21):3827. doi: 10.3390/nano12213827.
5. Pushpalatha C, Gayathri VS, Sowmya SV, Augustine D, Alamoudi A, Zidane B, Hassan Mohammad Albar N, Bhandi S. Nanohydroxyapatite in dentistry: A comprehensive review. Saudi Dent J. 2023 Sep;35(6):741-752. doi: 10.1016/j.sdentj.2023.05.018.
6. Balasooriya IL, Chen J, Korale Gedara SM, Han Y, Wickramaratne MN. Applications of Nano Hydroxyapatite as Adsorbents: A Review. Nanomaterials (Basel). 2022 Jul 6;12(14):2324. doi: 10.3390/nano12142324.
7. Azmy E, Al-Kholy MRZ, Fattouh M, Kenawi LMM, Helal MA. Impact of Nanoparticles Additions on the Strength of Dental Composite Resin. Int J Biomater. 2022 Jul 5;2022:1165431. doi: 10.1155/2022/1165431.
8. Pradeep V, Kumar P, Reddy IR. Investigation on mechanical properties and wear behavior of basalt fiber and SiO2 nanofillers reinforced composites. Results in Engineering. 2024 Sep 1;23:102722. https://doi.org/10.1016/j.rineng.2024.102722
9. Kontou E, Christopoulos A, Koralli P, Mouzakis DE. The effect of silica particle size on the mechanical enhancement of polymer nanocomposites. Nanomaterials. 2023 Mar 18;13(6):1095. https://doi.org/10.3390/nano13061095
10. Somashekar DG, Eswaregowda NB, Bheemappa S. Adhesive wear characteristics of mono and hybrid CF/Ep composite with nano-HAP filler. Journal of Metals, Materials and Minerals. 2024 Jun 13;34(3):2040. https://www.jmmm.material.chula.ac.th/index.php/jmmm/article/download/2040/1302
11. Satpathy A, Panda P, Nanda R, Priyadarsini S, Mishra M. Nanoparticles in oral health care: clinical insights and future perspectives. InApplications of Multifunctional Nanomaterials 2023 Jan 1 (pp. 411-436). Elsevier. https://doi.org/10.1016/B978-0-12-820557-0.00002-3
12. Fonseca RB, Marques AS, Bernades Kde O, Carlo HL, Naves LZ. Effect of glass fiber incorporation on flexural properties of experimental composites. Biomed Res Int. 2014;2014:542678. doi: 10.1155/2014/542678.
13. Par M, Plančak L, Ratkovski L, Tauböck TT, Marovic D, Attin T, Tarle Z. Improved Flexural Properties of Experimental Resin Composites Functionalized with a Customized Low-Sodium Bioactive Glass. Polymers (Basel). 2022 Oct 12;14(20):4289. doi: 10.3390/polym14204289.
14. Della Bona Á, Benetti P, Borba M, Cecchetti D. Flexural and diametral tensile strength of composite resins. Brazilian oral research. 2008;22:84-9. https://www.scielo.br/j/bor/a/Jg8kKpS69cgFF7rkZtn5jBf/?format=pdf&lang=en
15. La Rosa GR, Generali L, Bugea C, Ounsi HF, Benyőcs G, Neelakantan P, Pedullà E. Application of Tribology Concept in Dental Composites Field: A Scoping Review. Journal of Functional Biomaterials. 2022 Dec 8;13(4):287. https://www.mdpi.com/2079-4983/13/4/287#
16. Imai A, Takamizawa T, Sugimura R, Tsujimoto A, Ishii R, Kawazu M, Saito T, Miyazaki M. Interrelation among the handling, mechanical, and wear properties of the newly developed flowable resin composites. Journal of the mechanical behavior of biomedical materials. 2019 Jan 1;89:72-80. http://dx.doi.org/10.1016/j.jmbbm.2018.09.019
17. Zhao R, Meng X, Pan Z, Li Y, Qian H, Zhu X, Yang X, Zhang X. Advancements in nanohydroxyapatite: synthesis, biomedical applications and composite developments. Regen Biomater. 2024 Nov 5;12:rbae129. doi: 10.1093/rb/rbae129.
18. Veiga A, Madureira S, Costa JB, Castro F, Rocha F, Oliveira AL. Tackling current production of HAp and HAp-driven biomaterials. Materials Advances. 2023;4(22):5453-78. https://doi.org/10.1039/D3MA00363A
19. Yadav S, Gangwar S. Mode-I Fracture Toughness Analysis of n-HAPs Filled Dental Restorative Composites. Silicon. 2021 May;13:1347-58. 10.1007/s12633-020-00521-2
20. Santos C, Clarke RL, Braden M, Guitian F, Davy KW. Water absorption characteristics of dental composites incorporating hydroxyapatite filler. Biomaterials. 2002 Apr;23(8):1897-904. doi: 10.1016/s0142-9612(01)00331-3.
21. Latoui R, Bouzid D, Dugas PY, Espinosa E, Boyron O. In-situ sol-gel process for the formulation of Bis-GMA/TEGDMA/silica dental nanocomposite. Polymer. 2024 Nov 15;313:127731. https://doi.org/10.1016/j.polymer.2024.127731
22. Sergi R, Bellucci D, Cannillo V. A review of bioactive glass/natural polymer composites: State of the art. Materials. 2020 Dec 6;13(23):5560. https://doi.org/10.3390/ma13235560
23. Yang J, Shen J, Wu X, He F, Xie H, Chen C. Effects of nano-zirconia fillers conditioned with phosphate ester monomers on the conversion and mechanical properties of Bis-GMA-and UDMA-based resin composites. Journal of dentistry. 2020 Mar 1;94:103306. https://doi.org/10.1016/j.jdent.2020.103306
24. Narayan R. Friction and Wear of Dental Materials. Mater. Med. Devices. 2012;23:169-86. https://doi.org/10.31399/asm.hb.v23.a0005677
25. Costa WB, Félix Farias AF, Silva-Filho EC, Osajima JA, Medina-Carrasco S, Del Mar Orta M, Fonseca MG. Polysaccharide Hydroxyapatite (Nano)composites and Their Biomedical Applications: An Overview of Recent Years. ACS Omega. 2024 Jul 2;9(28):30035-30070. doi: 10.1021/acsomega.4c02170.