Main Article Content

Zain Ahmed Farooqui
Junaid Ahmed
Israa Ahmed
Maryam Hussain
Majeed Ruk
Javed Ahmed Ujan
Jaweria Zulfiqar Yousfani
Khadija Tahir Waraich
Nousheen Hafeez
Talha Hassan
Shahzad Baloch




Restorative dentistry has witnessed remarkable advancements in recent years, primarily driven by the development of novel biomaterials that offer improved biocompatibility and long-term stability. This research paper presents a comprehensive study on the evolution of biomaterials in restorative dentistry, highlighting the importance of biocompatibility and long-term stability. It explores the challenges faced by dental professionals in selecting the most suitable biomaterials and examines the innovative solutions that have emerged to address these challenges. Furthermore, this paper delves into the various biomaterials commonly employed in dental procedures and assesses their biocompatibility and long-term stability through a research of relevant  clinical case. The nano based amalgam was successfully used and resultswere studied. Ultimately, this research aims to provide insights into the development of novel biomaterials for enhancing restorative dentistry outcomes and ensuring the long-term success of dental procedures.

Abstract 250 | PDF Downloads 98


1. Bernabe, E.; Marcenes, W.; Hernandez, C.R.; Bailey, J.; Abreu, L.G.; Alipour, V.; Amini, S.; Arabloo, J.; Arefi, Z.; Arora, A.; et al. Global, Regional, and National Levels and Trends in Burden of Oral Conditions from 1990 to 2017: A Systematic Analysis for the Global Burden of Disease 2017 Study. J. Dent. Res. 2020, 99, 362–373. [Google Scholar]
2. Deo, P.N.; Deshmukh, R. Oral Microbiome: Unveiling the Fundamentals. J. Oral Maxillofac. Pathol. 2019, 23, 122–128. [Google Scholar]
3. Gao, L.; Xu, T.; Huang, G.; Jiang, S.; Gu, Y.; Chen, F. Oral Microbiomes: More and More Importance in Oral Cavity and Whole Body. Protein Cell 2018, 9, 488–500. [Google Scholar] [CrossRef] [PubMed][Green Version]
4. Hyde, S.; Dupuis, V.; Mariri, B.P.; Dartevelle, S. Prevention of Tooth Loss and Dental Pain for Reducing the Global Burden of Oral Diseases. Int. Dent. J. 2017, 67, 19–25. [Google Scholar] [CrossRef][Green Version]
5. Ma, L.; Wang, Y.; Wang, M.; Tian, Y.; Kang, W.; Liu, H.; Wang, H.; Dou, J.; Zhou, C. Effective Antimicrobial Activity of Cbf-14, Derived from a Cathelin-like Domain, against Penicillin-Resistant Bacteria. Biomaterials 2016, 87, 32–45. [Google Scholar] [CrossRef] [PubMed]
6. Oberoi, S.S.; Dhingra, C.; Sharma, G.; Sardana, D. Antibiotics in Dental Practice: How Justified Are We. Int. Dent. J. 2014, 65, 4–10. [Google Scholar] [CrossRef] [PubMed]
7. Anusavice, K.J. Present and Future Approaches for the Control of Caries. J. Dent. Educ. 2005, 69, 538–554. [Google Scholar] [CrossRef] [PubMed]
8. TOBIAS, R.S. Antibacterial Properties of Dental Restorative Materials: A Review. Int. Endod. J. 1988, 21, 155–160. [Google Scholar] [CrossRef]
9. Jandt, K.D.; Sigusch, B.W. Future Perspectives of Resin-Based Dental Materials. Dent. Mater. 2009, 25, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
10. Imazato, S.; Russell, R.R.B.; McCabe, J.F. Antibacterial Activity of MDPB Polymer Incorporated in Dental Resin. J. Dent. 1995, 23, 177–181. [Google Scholar] [CrossRef]
11. Pinto, C.; Berger, S.; Cavalli, V.; Da Cruz, S.; Goncalves, R.; Ambrosano, G.; Giannini, M. In Situ Antimicrobial Activity and Inhibition of Secondary Caries of Self-Etching Adhesives Containing an Antibacterial Agent and/or Fluoride. Am. J. Dent. 2015, 28, 167–173. [Google Scholar]
12. Thongthai, P.; Kitagawa, H.; Kitagawa, R.; Hirose, N.; Noree, S.; Iwasaki, Y.; Imazato, S. Development of Novel Surface Coating Composed of MDPB and MPC with Dual Functionality of Antibacterial Activity and Protein Repellency. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 108, 3241–3249. [Google Scholar] [CrossRef]
13. Zhang, J.F.; Wu, R.; Fan, Y.; Liao, S.; Wang, Y.; Wen, Z.T.; Xu, X. Antibacterial Dental Composites with Chlorhexidine and Mesoporous Silica. J. Dent. Res. 2014, 93, 1283–1289. [Google Scholar] [CrossRef]
14. Zafar, M.S.; Ullah, R.; Qamar, Z.; Fareed, M.A.; Amin, F.; Khurshid, Z.; Sefat, F. Properties of dental biomaterials. In Advanced Dental Biomaterials; Woodhead Publishing: Sawston, UK, 2019; pp. 7–35. [Google Scholar]
15. Korkut, E.; Torlak, E.; Altunsoy, M. Antimicrobial and Mechanical Properties of Dental Resin Composite Containing Bioactive Glass. J. Appl. Biomater. Funct. Mater. 2016, 14, e296–e301. [Google Scholar] [CrossRef] [PubMed]
16. Al Sunbul, H.; Silikas, N.; Watts, D.C. Surface and Bulk Properties of Dental Resin- Composites after Solvent Storage. Dent. Mater. 2016, 32, 987–997. [Google Scholar] [CrossRef] [PubMed][Green Version]
17. Ibrahim, M.; El-Wassefy, N.; Farahat, D. Biocompatibility of Dental Biomaterials. In Biomaterials for Oral and Dental Tissue Engineering; Tayebi, L., Moharamzadeh, K., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 117–140. [Google Scholar]
18. Rajan, G.; Shouha, P.; Ellakwa, A.; Bhowmik, K.; Xi, J.; Prusty, G. Evaluation of the Physical Properties of Dental Resin Composites Using Optical Fiber Sensing Technology. Dent. Mater. 2016, 32, 1113–1123. [Google Scholar] [CrossRef]
19. Wu, T.; Gan, X.; Zhu, Z.; Yu, H. Aging Effect of PH on the Mechanical and Tribological Properties of Dental Composite Resins. Part. Sci. Technol. 2018, 36, 378–385. [Google Scholar] [CrossRef]
20. Aliabadi, E.; Tavanafar, S.; Khaghaninejad, M.S. Marginal Bone Resorption of Posterior Mandible Dental Implants with Different Insertion Methods. BMC Oral Health 2020, 20, 1–7. [Google Scholar] [CrossRef] [PubMed]
21. Zhang, L.; Weir, M.D.; Chow, L.C.; Antonucci, J.M.; Chen, J.; Xu, H.H.K. Novel Rechargeable Calcium Phosphate Dental Nanocomposite. Dent. Mater. 2016, 32, 285–293. [Google Scholar] [CrossRef] [PubMed][Green Version]
22. Zhang, T.; Wang, Z.; Hancock, R.E.W.; De La Fuente-Núñez, C.; Haapasalo, M. Treatment of Oral Biofilms by a D-Enantiomeric Peptide. PLoS ONE 2016, 11, e0166997. [Google Scholar] [CrossRef][Green Version]
23. Al-Dulaijan, Y.A.; Weir, M.D.; Melo, M.A.S.; Sun, J.; Oates, T.W.; Zhang, K.; Xu, H.H.K. Protein-Repellent Nanocomposite with Rechargeable Calcium and Phosphate for Long-Term Ion Release. Dent. Mater. 2018, 34, 1735–1747. [Google Scholar] [CrossRef] [PubMed]
24. Al-Qarni, F.D.; Tay, F.; Weir, M.D.; Melo, M.A.S.; Sun, J.; Oates, T.W.; Xie, X.; Xu, H.H.K. Protein-Repelling Adhesive Resin Containing Calcium Phosphate Nanoparticles with Repeated Ion-Recharge and Re-Releases. J. Dent. 2018, 78, 91–99. [Google Scholar] [CrossRef] [PubMed]
25. Yuan, Y.; Hays, M.P.; Hardwidge, P.R.; Kim, J. Surface Characteristics Influencing Bacterial Adhesion to Polymeric Substrates. RSC Adv. 2017, 7, 14254–14261. [Google Scholar] [CrossRef][Green Version]
26. De-la-Pinta, I.; Cobos, M.; Ibarretxe, J.; Montoya, E.; Eraso, E.; Guraya, T.; Quindós, G. Effect of Biomaterials Hydrophobicity and Roughness on Biofilm Development. J. Mater. Sci. Mater. Med. 2019, 30, 77–88. [Google Scholar] [CrossRef]
27. Ahi, Z.B.; Renkler, N.Z.; Gul Seker, M.; Tuzlakoglu, K. Biodegradable Polymer Films with a Natural Antibacterial Extract as Novel Periodontal Barrier Membranes. Int. J. Biomater. 2019, 2019, 7932470. [Google Scholar] [CrossRef] [PubMed][Green Version]
28. Rezaie, H.; Rizi, H.; Khamseh, M.; Ochsner, A. A Review on Dental Materials; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
29. Øilo, M.; Bakken, V. Biofilm and Dental Biomaterials. Materials 2015, 8, 2887–2900. [Google Scholar] [CrossRef]
30. Hao, Y.; Huang, X.; Zhou, X.; Li, M.; Ren, B.; Peng, X.; Cheng, L. Influence of Dental Prosthesis and Restorative Materials Interface on Oral Biofilms. Int. J. Mol. Sci. 2018, 19, 3157. [Google Scholar] [CrossRef][Green Version]
31. Farrugia, C.; Haider, J.; Camilleri, L.; Camilleri, J. Clinical Relevance of Antimicrobial Testing Results for Dental Restorative Materials. J. Appl. Biomater. Funct. Mater. 2017, 15, 153–161. [Google Scholar] [CrossRef]
32. Qiu, W.; Zhou, Y.; Li, Z.; Huang, T.; Xiao, Y.; Cheng, L.; Peng, X.; Zhang, L.; Ren, B. Application of Antibiotics/Antimicrobial Agents on Dental Caries. Biomed. Res. Int. 2020, 2020, 5658212. [Google Scholar] [CrossRef][Green Version]
33. Sumi, Y.; Miura, H.; Sunakawa, M.; Michiwaki, Y.; Sakagami, N. Colonization of Dental Plaque by Respiratory Pathogens in Dependent Elderly. Gerodontology 2002, 19, 25–29. [Google Scholar] [CrossRef] [PubMed]
34. Li, L.; Finnegan, M.B.; Özkan, S.; Kim, Y.; Lillehoj, P.B.; Ho, C.M.; Lux, R.; Mito, R.; Loewy, Z.; Shi, W. In Vitro Study of Biofilm Formation and Effectiveness of Antimicrobial Treatment on Various Dental Material Surfaces. Mol. Oral Microbiol. 2010, 25, 384–390. [Google Scholar] [CrossRef] [PubMed]
35. Beldüz, N.; Kamburoǧlu, A.; Yilmaz, Y.; Tosun, I.; Beldüz, M.; Kara, C. Evaluation of Candida Albicans Biofilm Formation on Various Dental Restorative Material Surfaces. Niger. J. Clin. Pract. 2017, 20, 355–360. [Google Scholar] [CrossRef] [PubMed]
36. Asai, D.; Nakashima, H. Pathogenic Viruses Commonly Present in the Oral Cavity and Relevant Antiviral Compounds Derived from Natural Products. Medicines 2018, 5, 120. [Google Scholar] [CrossRef] [PubMed][Green Version]
37. Jiao, Y.; Tay, F.R.; Niu, L.N.; Chen, J.H. Advancing Antimicrobial Strategies for Managing Oral Biofilm Infections. Int. J. Oral Sci. 2019, 11, 1–11. [Google Scholar] [CrossRef] [PubMed][Green Version]
38. Rimondini, L.; Cochis, A.; Varoni, E.; Azzimonti, B.; Carrassi, A. Biofilm Formation on Implants and Prosthetic Dental Materials. In Handbook of Bioceramics and Biocomposites, 1st ed.; Antoniac, I.V., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–37. [Google Scholar]
39. Lad, P.P.; Kamath, M.; Tarale, K.; Kusugal, P.B. Practical Clinical Considerations of Luting Cements: A Review. J. Int. Oral Health JIOH 2014, 6, 116–120. [Google Scholar]
40. Ferrando-Magraner, E.; Bellot-Arcis, C.; Paredes-Gallardo, V.; Almerich-Silla, J.M.; Garcia-Sanz, V.; Fernandez-Alonso, M.; Montiel-Company, J.M. Antibacterial Properties of Nanoparticles in Dental Restorative Materials. A Systematic Review and Meta-Analysis. Medicina 2020, 56, 55. [Google Scholar] [CrossRef][Green Version]

Most read articles by the same author(s)