BIOCHEMICAL AND PHYSIOLOGICAL STUDY ON THE EFFECT OF LISINOPRIL AND TELMISARTAN ON VASCULAR REACTIVITY AND METABOLIC CHANGES IN DIABETIC RATS
Main Article Content
Keywords
Renin, Angiotensin, Aldosterone System (RAAS), telmisartan, lisinopril, Diabetes, albino rats
Abstract
including the hemodynamic effects of AII neutralization and the inhibition of AII-dependent tissue production of growth-promoting cytokines, free oxygen radicals, and fibrosis mediators. One of the most effective therapeutic strategies in medicine today is the blockade of the RAAS with ACEIs and ARBs. Patients with hypertension, acute myocardial infarction, chronic systolic heart failure, stroke, and diabetic renal disease have all been demonstrated to benefit from RAAS blockade.The present work aimed to study and evaluate the effects of RAAS inhibitors, ACE inhibitors (lisinopril), and ARB (telmisartan) on the vascular reactivity of the diabetic rats' aortae and the DM-induced biochemical changes.
Results showed that treatment withRAAS blocker ARB (telmisartan), better than ACE inhibitor (lisinopril), significantly improved the acetylcholine-induced vasodilatation and attenuated the noradrenaline-inducedcontraction of the isolated rat aorta in the diabetic rats as compared to diabetic untreated rats. Urea and creatininelevels decreased significantly in the RAAS blockers treated diabetic rats compared with those of the diabeticuntreated rats.
In conclusion, RAAS blockers improvedisturbedrenal functionsandvascularreactivityindiabeticrats.
References
2. Ajani, EO & Ibrahim, LB. (2020). Toxicological evaluations of combined administration of ethanolic stem bark extract of Enantia chlorantha and lisinopril in experimental type 2 diabetes. Original contribution. Open access. Volume 6, article number 29, 1-10.
3. Al-Hazmi, SF; Hoda GM Gad, Aliaa A Alamoudi, Basmah M Eldakhakhny, Sarah K Binmahfooz, MBBS, and Alhozali, AM. (2020). Evaluation of early biomarkers of renal dysfunction in diabetic patients. Saudi Med J. 2020 Jul; 41(7): 690–697. doi: 10.15537/smj.2020.7.25168.
4. Aravani, D., Foote, K., Figg, N., Finigan, A., Uryga, A., Clarke, M., & Bennett, M. (2020). Cytokine regulation of apoptosis-induced apoptosis and apoptosis-induced cell proliferation in vascular smooth muscle cells. Apoptosis, 25, 648-662.
5. Bernardi, S.; Michelli, A.; Zuolo, G.; Candido, R. and Fabris, B. (2016): Update on RAAS Modulation for the Treatment of Diabetic Cardiovascular Disease. J Diabetes Res. 8917578. doi: 10.1155/2016/8917578
6. Burgeiro, A.; Manuela G. Cerqueira, Bárbara M. Varela-Rodríguez, Sara Nunes, Paula Neto, Frederico C. Pereira, Flávio Reis, and Eugénia Carvalho (2017): Glucose and Lipid Dysmetabolism in a Rat Model of Prediabetes Induced by a High-Sucrose Diet. Nutrients. 2017 Jun; 9(6): 638., doi: 10.3390/nu9060638
7. Derosa, G.; Ragonesi, PD.; Mugellini, A.; Ciccarelli, L. and Fogari, R. (2004): Effects of Telmisartan Compared with Eprosartan on Blood Pressure Control, Glucose Metabolism and Lipid Profile in Hypertensive, Type 2 Diabetic Patients: a Randomized, Double-Blind, Placebo-Controlled 12-Month Study. J-STAGE home/Hypertension Research, Volume 27, Issue 7 Pages 457-464. doi.org/10.1291/hypres.27.457
8. El-desoky GE. Aboul-Soud, MAM. and Al-Numair, KS. (2012): Antidiabetic and hypolipidemic effects of Ceylon cinnamon (Cinnamomum verum) in alloxan-diabetic rats. Journal of Medicinal Plants Research. 6(9):1685-1691.
9. Imig, JD. (2020). Eicosanoid blood vessel regulation in physiological and pathological states. Clinical Science.
10. Khan, A. and Imig, JD. (2011): TELMISARATAN PROVIDES BETTER RENAL PROTECTION THAN VALSARTAN IN A RAT MODEL OF METABOLIC SYNDROME. Am J Hypertens. 2011 Jul; 24(7): 816–821. doi: 10.1038/ajh.2011.34
11. Kanga, Q. and Yang, C. (2020): Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol. 2020 Oct; 37: 101799. doi: 10.1016/j.redox.2020.101799
12. Li, Y., Li, X. and Yuan, H. (2012): Angiotensin II type-2 receptor-specific effects on the cardiovascular system. Cardiovascular Diagnosis and Therapy, Vol 2, No 1, doi: 10.3978/j
13. Li, Y., Liu, Y., Liu, S., Gao, M., Wang, W., Chen, K., ... & Liu, Y. (2023). Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal transduction and targeted therapy, 8(1), 152.
14. MOHARIR, G.; NAIKAWADI, AA.; PATIL, J.; BHIXAVATIMATH, P. and BHARATHA, A. (2020): Effect of Vitamin Don Blood Sugar, HbA1c and Serum Insulin Levels in Streptozotocin-Induced Diabetic Rats. Maedica (Bucur). Sep; 15(3): 327–331. doi: 10.26574/maedica.2020.15.3.327
15. Ohbayashi, H.; Minatoguchi, S.; Aoyama, T. Fujiwara, H. (2010):Open-label, Randomized Crossover Study Between Telmisartan and Valsartan on Improving Insulin Resistance and Adipocytokines in Nondiabetic Patients with Mild Hypertension. J Rural Med.; 5(2): 165–174. doi: 10.2185/jrm.5.165
16. Poznyak A, Grechko AV, Poggio P, Myasoedova VA, Alfieri V, Orekhov AN. The diabetes mellitus–atherosclerosis connection: the role of lipid and glucose metabolism and chronic inflammation. Int J Mol Sci. (2020) 21:1835. 10.3390/ijms21051835
17. Seedevi, P.; Ganesan, AR.; Moovendhan, M.; Mohan, K.; Sivasankar, P.; Loganathan, S.; Vairamani, S. 1 and Shanmugam, A. (2020): Anti-diabetic activity of crude polysaccharide and rhamnose-enriched polysaccharide from G. lithophila on Streptozotocin (STZ)-induced in Wistar rats. Sci Rep. 2020; 10: 556. doi: 10.1038/s41598-020-57486-w.
18. Teodoro, JS.; † Nunes, S.; Rolo, AP.; Reis, F. and Palmeira, CM. (2018): Therapeutic Options Targeting Oxidative Stress, Mitochondrial Dysfunction and Inflammation to Hinder the Progression of Vascular Complications of Diabetes. Front Physiol; 9: 1857. doi: 10.3389/fphys.2018.01857
19. Tentolouris, A.; Eleftheriadou, I.; Tzeravini, E.; Tsilingiris, D.; Stavroula, A.; Siasos, P.; G. and Tentolouris, N. (2020): Endothelium as a Therapeutic Target in Diabetes Mellitus: From Basic Mechanisms to Clinical Practice. Bentham Science Publishers, Volume 27, Issue 7, Page: 1089 – 1131. DOI:10.2174/0929867326666190119154152
20. Tran, N., Garcia, T., Aniqa, M., Ali, S., Ally, A., & Nauli, S. M. (2022). Endothelial nitric oxide synthase (eNOS) and the cardiovascular system: in physiology and in disease states. American journal of biomedical science & research, 15(2), 153.
21. Verhulst, MJ.L.; Loos, BG.; Gerdes, E. A. and Teeuw, WJ. (2019): Evaluating All Potential Oral Complications of Diabetes Mellitus. Front Endocrinol (Lausanne). 2019; 10: 56. doi: 10.3389/fendo.2019.00056.
22. Xavier, FE, Davel, APC, Rossoni, LV, Vassallo, DV, 2003. Timedependent hyperreactivity to phenylephrine in aorta from untreated diabetic rats: role of prostanoids and calcium mobilization. Vascular Pharmacology. 40, 67 – 76.
23. Yang H.; Jin, X.; Lam, CW. And Yan, S (2011): Oxidative stress and diabetes mellitus. Clin Chem Lab Med. Nov;49(11):1773-82. doi: 10.1515/CCLM.2011.250.
24. Yang, H.; Jin, X.; Lam, CW. And Yan, S (2011): Oxidative stress and diabetes mellitus. Clin Chem Lab Med. Nov;49(11):1773-82. doi: 10.1515/CCLM.2011.250.
25. Kharroubi, AT. and Darwish, HM (2015): Diabetes mellitus: The epidemic of the century. doi: 10.4239/wjd.v6.i6.850
26. Carbajal-García, A., Reyes-García, J., & Montaño, L. M. (2020). Androgen effects on the adrenergic system of the vascular, airway, and cardiac myocytes and their relevance in pathological processes. International Journal of Endocrinology, 2020(1), 8849641.
27. Archer, M., Dogra, N., Dovey, Z., Ganta, T., Jang, H. S., Khusid, J. A., ... & Kyprianou, N. (2021). Role of α-and β-adrenergic signaling in phenotypic targeting: significance in benign and malignant urologic disease. Cell Communication and Signaling,19, 1-21.
28. Toyama, P., Nakamura, T., ,Kataoka, K., Yasuda , O., Fukuda, M., Tokutomi, Y., Dong, Y., Ogawa, H.& Kim-Mitsuyama, S. (2011): Telmisartan protects against diabetic vascular complications in a mouse model of obesity and type 2 diabetes, partially through peroxisome proliferator activated receptor-γ-dependent activity. Biochemical and Biophysical Research Communications, 410 (3): 508-513