DNPH OF ISOSTEVIOL VIA SIRT 1/ NRF2 SIGNALING PATHWAY ABROGATES NEURONAL SYNAPSE & MEMORY DEFICITS IN AGING MOUSE MODEL
Main Article Content
Keywords
DNPH, Isosteviol, SIRT1/NRF2/HO, NFKB, D-Gal
Abstract
Aging is a natural process which can’t be stopped and reversed. The physiological changes of aging are inevitable and complex. There are a variety of causatives which speed up this process. The aim of the present study was to find the rational process of aging and to slow down or reverse the molecular intervention in ageing. The current study investigated the neurotherapeutic potential of Dinitrophenyl hydrazine (DNPH) of Isosteviol against D galactose (D-Gal) induced oxidative stress-mediated cognitive deficits in adult albino mice. DNPH of Isosteviol is naturally occurring compound with biological anti-aging properties in adult male albino mice. For a period of eight weeks, intraperitoneal (IP) administration of D-Gal at a dose of 100 mg/kg followed by the administration of DNPH of Isosteviol at a dose of 10 mg/kg on alternating days for the last four weeks. The results have shown that DNPH of Isosteviol significantly restored the cognitive deficits in mice that is assessed with Morris’s water maze and Y-maze test. Similarly this DNPH of Isosteviol markedly decreased the oxidative stress induced by D-Gal is determined through various antioxidant assay such as catalase, POD, SOD, glutathione and LPO. Moreover, DNPH of Isosteviol reduced the amyloidogenic pathway of Amyloid beta (Aβ) to diminish neuroinflammation by decreasing NF-kB and its downstream signaling such as TNF-α. Interestingly, this DNPH of Isosteviol rescued male adult albino mice by stimulating SIRT1 protein to reduce the Aβ production through SIRT1/NRF2/HO-1 signaling pathway.
Taken together, our results suggest that DNPH of Isosteviol is a novel neurotherapeutic agent that can be proved to be a safe, effective in reducing cognitive deficits and other complication associated with aging. A more in detail work is warranted to check the mechanism behind the DNPH of Isosteviol in aging mice.
References
2. Shwe, T., Pratchayasakul, W., Chattipakorn, N., & Chattipakorn, S. C. (2018). Role of D-galactose-induced brain aging and its potential used for therapeutic interventions. Exp Gerontol, 101, 13-36.
3. Winklhofer, K. F., & Haass, C. (2010). Mitochondrial dysfunction in Parkinson's disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1802(1), 29-44.
4. Arthur, C. R., Morton, S. L., Dunham, L. D., Keeney, P. M., & Bennett, J. P. (2009). Parkinson's disease brain mitochondria have impaired respirasome assembly, age-related increases in distribution of oxidative damage to mtDNA and no differences in heteroplasmic mtDNA mutation abundance. Molecular neurodegeneration, 4(1), 1-13.
5. Carvalho, C., Correia, S. C., Santos, R. X., Cardoso, S., Moreira, P. I., Clark, T. A., ... & Perry, G. (2009). Role of mitochondrial-mediated signaling pathways in Alzheimer disease and hypoxia. Journal of bioenergetics and biomembranes, 41, 433-440.
6. DeKosky, S. T., & Scheff, S. W. (1990). Synapse loss in frontal cortex biopsies in Alzheimer's disease: Correlation with cognitive severity. Annals of Neurology, 27(5), 457-464.
7. Harada, C. N., Natelson Love, M. C., & Triebel, K. L. (2013). Normal cognitive aging. Clinics in Geriatric Medicine, 29(4), 737-752
8. Zhao FF, Zhou YZ, Gao L, Qin XM, Du GH. (2017). [Advances in the study of the rat model of aging induced by D-galactose]. Yao Xue Xue Bao, 52(3), 347-54. Chinese. PMID: 29979551.
9. Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., ... & Yang, M. (2020). Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 9(6), 7204.
10. Ren, Z., He, H., Zuo, Z., et al. (2019). The role of different SIRT1-mediated signaling pathways in toxic injury. Cell Mol Biol Lett, 24, 36. https://doi.org/10.1186/s11658-019-0158-9
11. Zhang, X., Zhang, Q. X., Wang, X. M., Liu, L., & Dong, C. H. (2019). Effects of Iso Steviol on the oxidative stress and inflammation response in acute kidney injury induced by sepsis in rats. Chinese Journal of Cellular and Molecular Immunology, 35(6), 585-590.
12. Hwang, J. W., Kim, S. J., Kim, Y. H., Seo, J. A., Kim, S. G., Kim, N. H., ... & Baik, S. H. (2021). Interaction of NRF2 and neuro-inflammatory factors predicts cognitive decline in elderly patients with type 2 diabetes. Psychoneuroendocrinology, 122, 104927.
13. Chen C, Zhou M, Ge Y, Wang X. (2020). SIRT1 and aging related signaling pathways. Mech Ageing Dev, 187, 111215. https://doi.org/10.1016/j.mad.2020.111215
14. Park, S. A., Kim, M. MY., & Kim, Y. S. (2021). The neuroprotective effects of Iso Steviol in primary cultures of rat cortical cells via the ROS-activated Erk1/2 and PI3K/Akt signaling pathways. Food and Chemical Toxicology, 146, 111867.
15. Ullah, A., Munir, S., Mabkhot, Y., & Badshah, S. L. (2019). Bioactivity profile of the diterpene isosteviol and its derivatives. Molecules, 24(4), 678.
16. Vorhees, C., Williams, M. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1, 848–858 (2006). https://doi.org/10.1038/nprot.2006.116
17. Kraeuter AK, Guest PC, Sarnyai Z. The Y-Maze for Assessment of Spatial Working and Reference Memory in Mice. Methods Mol Biol. 2019;1916:105-111. doi: 10.1007/978-1-4939-8994-2_10. PMID: 30535688.
18. Zhang J, Chen R, Yu Z, Xue L. Superoxide Dismutase (SOD) and Catalase (CAT) Activity Assay Protocols for Caenorhabditis elegans. Bio Protoc. 2017 Aug 20;7(16):e2505. doi: 10.21769/BioProtoc.2505. PMID: 34541169; PMCID: PMC8413628.
19. Owen JB, Butterfield DA. Measurement of oxidized/reduced glutathione ratio. Methods Mol Biol. 2010;648:269-77. doi: 10.1007/978-1-60761-756-3_18. PMID: 20700719.
20. Aguilar Diaz De Leon J, Borges CR. Evaluation of Oxidative Stress in Biological Samples Using the Thiobarbituric Acid Reactive Substances Assay. J Vis Exp. 2020 May 12;(159):10.3791/61122. doi: 10.3791/61122. PMID: 32478759; PMCID: PMC9617585.
21. de Oliveira FK, Santos LO, Buffon JG. Mechanism of action, sources, and application of peroxidases. Food Res Int. 2021 May;143:110266. doi: 10.1016/j.foodres.2021.110266. Epub 2021 Mar 5. PMID: 33992367.
22. McCord, J. M., & Fridovich, I. (1969). Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). Journal of Biological chemistry, 244(22), 6049-6055. McCord, J. M., & Fridovich, I. (1969). Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). Journal of Biological chemistry, 244(22), 6049-6055.
23. Fido, R.J., Tatham, A.S., Shewry, P.R. (1995). Western Blotting Analysis. In: Jones, H. (eds) Plant Gene Transfer and Expression Protocols. Methods in Molecular Biology™, vol 49. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-321-X:423
24. Rana RM, Rampogu S, Abid NB, Zeb A, et al., (2020) In silico study identified methotrexate analog as potential inhibitor of drug resistant human dihydrofolate reductase for cancer therapeutics. Molecules 25 (15), 3510
25. Irfanullah, Amir Zeb, et al., (2018) Molecular and in silico analyses validates pathogenicity of homozygous mutations in the NPR2 gene underlying variable phenotypes of Acromesomelic dysplasia, type Maroteaux. The International Journal of Biochemistry & Cell Biology 102, 76-86
26. Kumar, A., & Singh, A. (2015). A review on Alzheimer's disease pathophysiology and its management: an update. Pharmacological reports, 67(2), 195-203.
27. Parameshwaran K, Irwin MH, Steliou K, Pinkert CA. D-galactose effectiveness in modeling aging and therapeutic antioxidant treatment in mice. Rejuvenation Res. 2010 Dec;13(6):729-35. doi: 10.1089/rej.2010.1020. Epub 2011 Jan 4. PMID: 21204654; PMCID: PMC3034100.
28. Hammad, M., Raftari, M., Cesário, R., Salma, R., Godoy, P., Emami, S. N., & Haghdoost, S. (2023). Roles of oxidative stress and Nrf2 signaling in pathogenic and non-pathogenic cells: A possible general mechanism of resistance to therapy. Antioxidants, 12(7), 1371.
29. Shwe, T., Pratchayasakul, W., Chattipakorn, N., & Chattipakorn, S. C. (2018). Role of D-galactose-induced brain aging and its potential used for therapeutic interventions. Experimental gerontology, 101, 13-36.
30. Ahmad, S., Khan, A., Ali, W., Jo, M. H., Park, J., Ikram, M., & Kim, M. O. (2021). Fisetin rescues the mice brains against D-galactose-induced oxidative stress, neuroinflammation and memory impairment. Frontiers in pharmacology, 12, 612078.
31. Dai H, Case AW, Riera TV et al. Crystallographic structure of a small molecule SIRT1 activator-enzyme complex. Nat. Comm. 6 (2015), 7645
32. Cao D, Wang M, Qiu X et al. Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol. Gene & Development. 29 (2015), 1316-1325
33. Azminah A, Erlina L, Radji M et al. In silico and in vitro identification of candidate SIRT1 activators from Indonesian medicinal plants compounds database. 83 (2019), 107096.
34. Samad, N., Hafeez, F., & Imran, I. (2022). D-galactose induced dysfunction in mice hippocampus and the possible antioxidant and neuromodulatory effects of selenium. Environmental Science and Pollution Research, 29(4), 5718-5735.
35. Rusu, M. E., Mocan, A., Ferreira, I. C., & Popa, D. S. (2019). Health benefits of nut consumption in middle-aged and elderly population. Antioxidants, 8(8), 302.
36. Latimer, C. S., Brewer, L. D., Searcy, J. L., Chen, K. C., Popović, J., Kraner, S. D., ... & Porter, N. M. (2014). Vitamin D prevents cognitive decline and enhances hippocampal synaptic function in aging rats. Proceedings of the National Academy of Sciences, 111(41), E4359-E4366.
37. Niedzielska, E., Smaga, I., Gawlik, M. et al. Oxidative Stress in Neurodegenerative Diseases. Mol Neurobiol 53, 4094–4125 (2016). https://doi.org/10.1007/s12035-015-9337-5
38. Ikram, M., Muhammad, T., Rehman, S. U., Khan, A., Jo, M. G., Ali, T., et al. (2019a). Hesperetin confers neuroprotection by regulating nrf2/TLR4/NFkappaB signaling in an abeta mouse model. Mol. Neurobiol. 56(9), 6293–6309. doi:10.1007/s12035-019-1512-7
39. Khan, A., Ikram, M., Muhammad, T., Park, J., and Kim, M. O. (2019a). Caffeine modulates cadmium-induced oxidative stress, neuroinflammation, and cognitive impairments by regulating nrf-2/HO-1 in vivo and in vitro. J. Clin. Med. 8(5), 680. doi:10.3390/jcm8050680
40. Badshah, H., Ikram, M., Ali, W., Ahmad, S., Hahm, J. R., and Kim, M. O. (2019). Caffeine may abrogate LPS-induced oxidative stress and neuroinflammation by regulating nrf2/TLR4 in adult mouse brains. Biomolecules 9(11), 719. doi:10.3390/biom9110719
41. Chang, L., Liu, X., Liu, J., Li, H., Yang, Y., Liu, J., et al. (2014). D-galactose induces a mitochondrial complex I deficiency in mouse skeletal muscle: potential benefits of nutrient combination in ameliorating muscle impairment. J. Med. Food 17, 357–364. doi:10.1089/jmf.2013.2830
42. Salminen, A., Kaarniranta, K., and Kauppinen, A. (2013). Crosstalk between oxidative stress and SIRT1: impact on the aging process. Int. J. Mol. Sci. 14, 3834–3859. doi:10.3390/ijms14023834
43. Johnson, J. A., Johnson, D. A., Kraft, A. D., Calkins, M. J., Jakel, R. J., Vargas, M. R., et al. (2008). The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration. Ann. N. Y. Acad. Sci. 1147, 61–69. doi:10.1196/annals.1427.036
44. Ahmad, A., Ali, T., Rehman, S. U., and Kim, M. O. (2019). Phytomedicine-based potent antioxidant, fisetin protects CNS-insult LPS-induced oxidative stressmediated neurodegeneration and memory impairment. J. Clin. Med. 8(6), 850. doi:10.3390/jcm8060850
45. Chen, P., Chen, F., and Zhou, B. H. (2019). Leonurine ameliorates D-galactoseinduced aging in mice through activation of the Nrf2 signalling pathway. Aging 11, 7339–7356. doi:10.18632/aging.101733
46. Ikram, M., Ullah, R., Khan, A., and Kim, M. O. J. C. (2020). Ongoing research on the role of gintonin in the management of neurodegenerative disorders. Cells, 9, 1464. doi:10.3390/cells9061464
47. Rehman, S. U., Ikram, M., Ullah, N., Alam, S. I., Park, H. Y., Badshah, H., et al. (2019). Neurological enhancement effects of melatonin against brain injuryinduced oxidative stress, neuroinflammation, and neurodegeneration via AMPK/CREB signaling. Cells 8(7), 760. doi:10.3390/cells8070760
48. Tian, Y., Wen, Z., Lei, L., Li, F., Zhao, J., Zhi, Q., ... & Ming, J. (2019). Coreopsis tinctoria flowers extract ameliorates D-galactose induced aging in mice via regulation of Sirt1-Nrf2 signaling pathway. Journal of functional foods, 60, 103464.
49. Sosnowska, B., Mazidi, M., Penson, P., Gluba-Brzózka, A., Rysz, J., & Banach, M. (2017). The sirtuin family members SIRT1, SIRT3 and SIRT6: Their role in vascular biology and atherogenesis. Atherosclerosis, 265, 275-282.
50. Wang, W., Liu, F., Xu, C., Liu, Z., Ma, J., Gu, L., ... & Hou, J. (2021). Lactobacillus plantarum 69-2 combined with galacto-oligosaccharides alleviates d-galactose-induced aging by regulating the AMPK/SIRT1 signaling pathway and gut microbiota in mice. Journal of Agricultural and Food Chemistry, 69(9), 2745-2757.
51. Kim, M., Cho, K. H., Shin, M. S., Lee, J. M., Cho, H. S., Kim, C. J., ... & Yang, H. J. (2014). Berberine prevents nigrostriatal dopaminergic neuronal loss and suppresses hippocampal. apoptosis in mice with Parkinson's disease. International Journal of Molecular Medicine, 33(4), 870-878.
52. Ullah, F., Ali, T., Ullah, N., & Kim, M. O. (2015). Caffeine prevents d-galactose-induced cognitive deficits, oxidative stress, neuroinflammation and neurodegeneration in the adult rat brain. Neurochemistry international, 90, 114-124.
53. Zhang, X., Wu, J. Z., Lin, Z. X., Yuan, Q. J., Li, Y. C., Liang, J. L., ... & Liu, Y. H. (2019). Ameliorative effect of supercritical fluid extract of Chrysanthemum indicum Linnén against D-galactose induced brain and liver injury in senescent mice via suppression of oxidative stress, inflammation and apoptosis. Journal of ethnopharmacology, 234, 44-56.
54. Zhang, L., Xu, L. Y., Tang, F., Liu, D., Zhao, X. L., Zhang, J. N., ... & Ao, H. (2024). New perspectives on the therapeutic potential of quercetin in non-communicable diseases: Targeting Nrf2 to counteract oxidative stress and inflammation. Journal of Pharmaceutical Analysis.
55. Li, A., Chen, S., Yang, Z., Luan, C., Lu, W., Hao, F., ... & Wang, D. (2023). 4-Methylguaiacol alleviated alcoholic liver injury by increasing antioxidant capacity and enhancing autophagy through the Nrf2-Keap1 pathway. Food Bioscience, 51, 102160.
56. Gill, T., & Levine, A. D. (2013). Mitochondria-derived hydrogen peroxide selectively enhances T cell receptor-initiated signal transduction. Journal of Biological Chemistry, 288(36), 26246-26255.
57. Yuan, Y., Yucai, L., Lu, L., Hui, L., Yong, P., & Haiyang, Y. (2022). Acrylamide induces ferroptosis in HSC-T6 cells by causing antioxidant imbalance of the XCT-GSH-GPX4 signaling and mitochondrial dysfunction. Toxicology Letters, 368, 24-32.
58. Ali, T., Kim, T., Rehman, S. U., Khan, M. S., Amin, F. U., Khan, M., ... & Kim, M. O. (2018). Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of Alzheimer’s disease. Molecular neurobiology, 55, 6076-6093.
59. Al-Rasheed NM Al-Rasheed NM Bassiouni YA Hasan IH Al-Amin MA Al-Ajmi HN et al. (2015) Vitamin D attenuates pro-inflammatory TNF-α cytokine expression by inhibiting NF-кB/p65 signaling in hypertrophied rat hearts. J Physiol Biochem 71(2): 289–299
60. Berkowitz, B., Huang, D. B., Chen-Park, F. E., Sigler, P. B., & Ghosh, G. (2002). The X-ray crystal structure of the NF-κB p50· p65 heterodimer bound to the interferon β-κB site. Journal of Biological Chemistry, 277(27), 24694-24700.