ASSESSMENT OF RISK FACTORS OF COVID-19 SEVERITY AND MORTALITY USING META-ANALYSIS

Main Article Content

Shahla Faisal
Kiran Hayat Khan
Mohsin Ali
Faisal Maqbool Zahid
Muhammad Sajjad Iqbal
Bushra Aslam

Keywords

Covid-19, Odds ratio, Meta-Analysis, Risk assessment

Abstract

Coronavirus Disease 2019 (COVID-19) became widespread in December 2019, causing a Public Health Emergency. It was a cause of great anxiety for a variety of reasons. Since it was a new virus, no one was immune, and there was no antidote or vaccine. Because of its uniqueness, scientists were unsure of how it acts and had no historical data to go on. Mild, moderate, and serious or critical COVID-19 cases were classified. This comprehensive analysis combines findings from multiple studies, shedding light on the numerous factors influencing COVID-19 outcomes. This study aims to assess the risk factors associated with COVID-19 by applying rigorous statistical analyses to a comprehensive dataset encompassing demographic, clinical, and socio-economic variables. A systematic approach is employed for literature review and data extraction, ensuring the inclusion of studies with high methodological quality. Through this comprehensive assessment, we try to identify high-risk populations and factors amenable to intervention.  A critical part of this investigation is to determine the mortality rate among patients hospitalized with COVID-19 and to identify specific risk factors that may contribute to fatal outcomes. More specifically, the study explores the impact of prevalent comorbidities on the mortality rate among COVID-19 patients, hypothesizing that the presence of such conditions could potentially elevate the risk of death.
Abstract 34 | PDF Downloads 24

References

1. Alimadadi, A., Aryal, S., Manandhar, I., Munroe, P.B., Joe, B., & Cheng, X. (2020). Artificial intelligence and machine learning to fight COVID-19. Physiological Genomics, 52(4), 200-202.
2. Boregowda, U., Aloysius, M. M., Perisetti, A., Gajendran, M., Bansal, P., & Goyal, H. (2020). Serum Activity of Liver Enzymes Is Associated With Higher Mortality in COVID-19: A Systematic Review and Meta-Analysis. Frontiers in Medicine, 7(July), 1–10. https://doi.org/10.3389/fmed.2020.00431
3. Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2021). Introduction to meta-analysis. John Wiley & Sons.
4. Faisal, S., & Tutz, G. (2021). Imputation methods for high-dimensional mixed-type datasets by nearest neighbors. Computers in Biology and Medicine, 135, 104577.
5. Galbadage, T., Peterson, B. M., Awada, J., Buck, A. S., Ramirez, D. A., Wilson, J., & Gunasekera, R. S. (2020). Systematic review and meta-analysis of sex-specific COVID-19 clinical outcomes. Frontiers in Medicine, 7(June), 1–15. https://doi.org/10.3389/ fmed.2020.00348
6. Goyal, P., Choi, J. J., Pinheiro, L. C., Schenck, E. J., Chen, R., Jabri, A., ... & Salvatore, S. P. (2020). Clinical characteristics of Covid-19 in New York City. New England Journal of Medicine, 382(24), 2372-2374.
7. Gülsen, A., Yigitbas, B. A., Uslu, B., Drömann, D., & Kilinc, O. (2020). The Effect of Smoking on COVID-19 Symptom Severity: Systematic Review and Meta-Analysis. Pulmonary Medicine, 2020. https://doi.org/10.1155/2020/7590207
8. Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., Xiao, Y., Gao, H., Guo, L., Xie, J., Wang, G., Jiang, R., Gao, Z., Jin, Q., Wang, J., & Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395(10223), 497-506.
9. Kass, D. A., Duggal, P., & Cingolani, O. (2020). Obesity could shift severe Covid-19 disease to younger ages. The Lancet, 395(10236), 1544-1545.
10. Kulkarni, A. V., Kumar, P., Tevethia, H. V., Premkumar, M., Arab, J. P., Candia, R., … Reddy, D. N. (2020). Systematic review with meta-analysis: liver manifestations and outcomes in COVID-19. Alimentary Pharmacology and Therapeutics, 52(4), 584–599. https://doi.org/10.1111/apt.15916
11. Li, D., Liu, C., Liu, J., Hu, J., Yang, Y., & Zhou, Y. (2020). Analysis of Risk Factors for 24 Patients With COVID-19 Developing From Moderate to Severe Condition. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/fcimb.2020.548582
12. Li, J., He, X., Yuan Yuan, Zhang, W., Li, X., Zhang, Y., … Dong, G. (2021). Meta-analysis investigating the relationship between clinical features, outcomes, and severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia. American Journal of Infection Control, 49(1), 82–89. https://doi.org/10.1016/j.ajic.2020.06.008
13. Li, L. quan, Huang, T., Wang, Y. qing, Wang, Z. ping, Liang, Y., Huang, T. bi, … Wang, Y. (2020). COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis. Journal of Medical Virology, 92(6), 577–583. https://doi.org/10.1002/jmv.25757
14. Mantovani, A., Byrne, C. D., Zheng, M. H., & Targher, G. (2020). Diabetes as a risk factor for greater COVID-19 severity and in-hospital death: A meta-analysis of observational studies. Nutrition, Metabolism and Cardiovascular Diseases, 30(8), 1236–1248. https://doi.org/10.1016/j.numecd.2020.05.014
15. Matar, R., Alrahmani, L., Monzer, N., Debiane, L. G., Berbari, E., Fares, J., … Murad, M. H. (2021). Clinical Presentation and Outcomes of Pregnant Women with Coronavirus Disease 2019: A Systematic Review and Meta-analysis. Clinical Infectious Diseases, 72(3), 521–533. https://doi.org/10.1093/cid/ciaa828
16. Ng, W. H., Tipih, T., Makoah, N. A., Vermeulen, J. G., Goedhals, D., Sempa, J. B., … Mahalingam, S. (2021). Comorbidities in SARS-CoV-2 patients: A systematic review and meta-analysis. MBio, 12(1), 1–12. https://doi.org/10.1128/mBio.03647-20
17. Niedzwiedz, C. L., O'Donnell, C. A., Jani, B. D., Demou, E., Ho, F. K., Celis-Morales, C., ... & Katikireddi, S. V. (2020). Ethnic and socioeconomic differences in SARS-CoV-2 infection: prospective cohort study using UK Biobank. BMC Medicine, 18(1), 1-14.
18. Patel, J. A., Nielsen, F. B. H., Badiani, A. A., Assi, S., Unadkat, V. A., Patel, B., ... & Wardle, H. (2020). Poverty, inequality and COVID-19: the forgotten vulnerable. Public Health, 183, 110-111.
19. Richardson, S., Hirsch, J. S., Narasimhan, M., Crawford, J. M., McGinn, T., Davidson, K. W., & Zanos, T. P. (2020). Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA, 323(20), 2052-2059.
20. Ofori-Asenso, R., Ogundipe, O., Agyeman, A. A., Chin, K. L., Mazidi, M., Ademi, Z., … Liew, D. (2020). Cancer is associated with severe disease in COVID-19 patients: a systematic review and meta-analysis. Ecancermedicalscience, 14, 1–10. https://doi.org/10.3332/ECANCER.2020.1047
21. Onyema, E. M. (2020). Impact of Coronavirus Pandemic on Education. Journal of Education and Practice, 11(13), 108–121. https://doi.org/10.7176/jep/11-13-12
22. Park, R., Chidharla, A., Mehta, K., Sun, W., Wulff-Burchfield, E., & Kasi, A. (2020). Sex-bias in COVID-19-associated illness severity and mortality in cancer patients: A systematic review and meta-analysis. EClinicalMedicine, 26. https://doi.org/10.1016/j.eclinm.2020.100519
23. Patel, U., Malik, P., Usman, M. S., Mehta, D., Sharma, A., Malik, F. A., … Sacks, H. (2020). Age-Adjusted Risk Factors Associated with Mortality and Mechanical Ventilation Utilization Amongst COVID-19 Hospitalizations—a Systematic Review and Meta-Analysis. SN Comprehensive Clinical Medicine, 2(10), 1740–1749. https://doi.org/10.1007/s42399-020-00476-w
24. Petrakis, D., Margină, D., Tsarouhas, K., Tekos, F., Stan, M., Nikitovic, D., … Tsatsakis, A. (2020). Obesity ‑ a risk factor for increased COVID‑19 prevalence, severity and lethality (Review). Molecular Medicine Reports, 22(1), 9–19. https://doi.org/10.3892/mmr.2020.11127
25. Pijls, B. G., Jolani, S., Atherley, A., Derckx, R. T., Dijkstra, J. I. R., Franssen, G. H. L., … Zeegers, M. P. (2021). Demographic risk factors for COVID-19 infection, severity, ICU admission and death: A meta-analysis of 59 studies. BMJ Open, 11(1), 1–10. https://doi.org/10.1136/bmjopen-2020-044640
26. Pranata, R., Huang, I., Lim, M. A., Wahjoepramono, E. J., & July, J. (2020). Impact of cerebrovascular and cardiovascular diseases on mortality and severity of COVID-19–systematic review, meta-analysis, and meta-regression. Journal of Stroke and Cerebrovascular Diseases, 29(8), 104949. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104949
27. Schiffrin, E. L., Flack, J. M., Ito, S., Muntner, P., & Webb, R. C. (2020). Hypertension and COVID-19. American Journal of Hypertension, 33(5), 373–374. https://doi.org/10.1093/ajh/hpaa057
28. Selvin, E., & Juraschek, S. P. (2020). Diabetes epidemiology in the covid-19 pandemic. Diabetes Care, 43(8), 1690–1694. https://doi.org/10.2337/dc20-1295
29. Silverio, A., Di Maio, M., Citro, R., Esposito, L., Iuliano, G., Bellino, M., … Galasso, G. (2021). Cardiovascular risk factors and mortality in hospitalized patients with COVID-19: systematic review and meta-analysis of 45 studies and 18,300 patients. BMC Cardiovascular Disorders, 21(1), 1–13. https://doi.org/10.1186/s12872-020-01816-3
30. Singh, A. K., Gillies, C. L., Singh, R., Singh, A., Chudasama, Y., Coles, B., … Khunti, K. (2020). Prevalence of co-morbidities and their association with mortality in patients with COVID-19: A systematic review and meta-analysis. Diabetes, Obesity and Metabolism, 22(10), 1915–1924. https://doi.org/10.1111/dom.14124
31. World Health Organization (2020). Coronavirus disease (COVID-19) pandemic. [Online] Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019
32. Wu, Z. hong, Tang, Y., & Cheng, Q. (2021). Diabetes increases the mortality of patients with COVID-19: a meta-analysis. Acta Diabetologica, 58(2), 139–144. https://doi.org/10.1007/s00592-020-01546-0
33. Yang1, J., & Le, Z. M. and Y. (2021). A meta-analysis of the association between obesity and COVID-19.
34. Zahid, F. M., & Ramzan, S. (2012). Ordinal ridge regression with categorical predictors. Journal of Applied Statistics, 39(1), 161-171.
35. Zahid, F.M., Faisal, S., Ali, M., Shahzad, K., and Khaliq, A. (2024). DEEP LEARNING TECHNIQUES FOR COVID-19 DISEASE DETECTION: A META-ANALYSIS. Journal of Population Therapeutics & Clinical Pharmacology. 31(3), 1322-1330.
36. Faisal Maqbool Zahid, Shahla Faisal, Mohsin Ali, Khawar Shahzad, & Ayesha Khaliq. (2024). DEEP LEARNING TECHNIQUES FOR COVID-19 DISEASE DETECTION: A META-ANALYSIS. Journal of Population Therapeutics and Clinical Pharmacology, 31(3), 1322–1330. https://doi.org/10.53555/jptcp.v31i3.3790
37. Zheng, Z., Peng, F., Xu, B., Zhao, J., Liu, H., Peng, J., … Tang, W. (2020). Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. Journal of Infection, 81(2), e16–e25. https://doi.org/10.1016/j.jinf.2020.04.021
38. Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Wang, Y., Song, B., Gu, X., Guan, L., Wei, Y., Li, H., Wu, X., Xu, J., Tu, S., Zhang, Y., Chen, H., & Cao, B. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 395(10229), 1054-1062.
39. Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., ... & Tan, W. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382(8), 727-733.

Most read articles by the same author(s)