ALTERATION OF IMMUNOMARKERS AND RELATIVE TELOMERE LENGTH IN COVID-19 PATIENTS

Main Article Content

Noor Ul Ain Malik
Aftab Ahmad
Muhammad Abubakar
Dr Khawar Malik
Ayesha Mehboob
Nazia Rehman
Nasim Akhtar
Habib Bokhari

Keywords

COVID-19, Immunomarkers, Cytokines, Telomere Length, ARDS

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in December 2019 in Wuhan, China, and led to a global pandemic. The first case of COVID-19 in Pakistan was reported from Karachi on February 26, 2020, since then 1,523,590 cases have been reported with an increasing death toll of 30,340 as of March 2022. Most of the patients showed several mild to moderate symptoms and recovered without the need to be hospitalized. However, a significant number developed severe symptoms like pneumonia leading to acute respiratory distress syndrome (ARDS) with severe medicals complications. The current study investigates the expression of cytokines IL6, IL8, and IL17 in COVID-19 patients with moderate to severe symptoms and patients ventilated due to ARDS concerning in relation to their leukocyte telomere length. 73% of the patients included in this study were male, among them 44% were >60 years.  The occurrence of ARDS was observed to be 15.6–31% higher compared to other organ injuries. One of the key factors involved in ARDS is the concomitant increased release of cytokines like IL6, IL8, IL17, etc also known as the cytokine storm, contributing to severity of the disease. Our results show that COVID-19 positive individuals with underlying health conditions and old age showing severe symptoms have increased levels of proinflammatory serum interleukins IL6, IL8, and IL17 by ~6000%, ~2000%, and ~300% respectively. In individuals ventilated due to ARDS, an inverse correlation was seen between critical shortening of leukocyte telomere length and increased levels of interleukins IL6 (r=-.541, p=0.004), IL8 (r=-.235, p=0.009), and IL17(r=-.137, p=0.014). An increase of ~10,000%, ~2,900, and ~600% in comparison with the normal range were seen in IL6, IL8, and IL17 levels respectively with an enhanced manifestation of disease irrespective of comorbidities and age, suggesting that genetic factors are at play.

Abstract 180 | PDF Downloads 104

References

1. Ackermann, M., Verleden, S. E., Kuehnel, M., Haverich, A., Welte, T., Laenger, F., Vanstapel, A., Werlein, C., Stark, H., Tzankov, A., Li, W. W., Li, V. W., Mentzer, S. J., & Jonigk, D. 2020. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N. Engl. J. Med., 383(2), 120–128. https://doi.org/10.1056/NEJMoa2015432
2. Akhmerov, A., & Marbán, E. 2020. COVID-19 and the Heart. Circ Res, 126(10), 1443–1455. https://doi.org/10.1161/CIRCRESAHA.120.317055
3. Arai, Y., Martin-Ruiz, C. M., Takayama, M., Abe, Y., Takebayashi, T., Koyasu, S., Suematsu, M., Hirose, N., & von Zglinicki, T. 2015. Inflammation, But Not Telomere Length, Predicts Successful Ageing at Extreme Old Age: A Longitudinal Study of Semi-supercentenarians. EBioMedicine, 2(10), 1549–1558. https://doi.org/10.1016/j.ebiom.2015.07.029
4. Asselta, R., Paraboschi, E. M., Mantovani, A., & Duga, S. 2020. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. Aging, 12(11), 10087–10098. https://doi.org/10.18632/aging.103415
5. Aviv, A. 2020. Telomeres and COVID‐19. FASEB J., 34(6), 7247–7252. https://doi.org/10.1096/fj.202001025
6. Aziz, M., Fatima, R., & Assaly, R. 2020. Elevated interleukin‐6 and severe COVID‐19: A meta‐analysis. J. Med. Virol., 92(11), 2283–2285. https://doi.org/10.1002/jmv.25948
7. Barrett, E. L. B., & Richardson, D. S. 2011. Sex differences in telomeres and lifespan. Aging Cell, 10(6), 913–921. https://doi.org/10.1111/j.1474-9726.2011.00741.x
8. Benetti, E., Tita, R., Spiga, O., Ciolfi, A., Birolo, G., Bruselles, A., Doddato, G., Giliberti, A., Marconi, C., Musacchia, F., Pippucci, T., Torella, A., Trezza, A., Valentino, F., Baldassarri, M., Brusco, A., Asselta, R., Bruttini, M., Furini, S., Pinto, A. M. 2020. ACE2 gene variants may underlie interindividual variability and susceptibility to COVID-19 in the Italian population. Eur. J. Hum. Genet., 28(11), 1602–1614. https://doi.org/10.1038/s41431-020-0691-z
9. Cawthon, R. M. 2002. Telomere measurement by quantitative PCR. Nucleic Acids Res., 30(10), 47e–447. https://doi.org/10.1093/nar/30.10.e47
10. Centre for Disease Control and Prevention. 2020. Coronavirus, Human Coronavirus Types. Partners Available at: https://www.cdc.gov/coronavirus/types.html (Accessed on 25 Mar 2022)
11. Chen, L., Wang, G., Tan, J., Cao, Y., Long, X., Luo, H., Tang, Q., Jiang, T., Wang, W., & Zhou, J. 2020. Scoring cytokine storm by the levels of MCP-3 and IL-8 accurately distinguished COVID-19 patients with high mortality. Signal Transduct. Target. Ther., 5(1), 292. https://doi.org/10.1038/s41392-020-00433-y
12. Chen, X., Zhao, B., Qu, Y., Chen, Y., Xiong, J., Feng, Y., Men, D., Huang, Q., Liu, Y., Yang, B., Ding, J., & Li, F. 2020. Detectable Serum Severe Acute Respiratory Syndrome Coronavirus 2 Viral Load (RNAemia) Is Closely Correlated with Drastically Elevated Interleukin 6 Level in Critically Ill Patients with Coronavirus Disease 2019. Clin. Infect. Dis, 71(8), 1937–1942. https://doi.org/10.1093/cid/ciaa449
13. Cohen, S., Janicki-Deverts, D., Turner, R. B., Casselbrant, M. L., Li-Korotky, H.-S., Epel, E. S., & Doyle, W. J. 2013. Association Between Telomere Length and Experimentally Induced Upper Respiratory Viral Infection in Healthy Adults. JAMA, 309(7), 699. https://doi.org/10.1001/jama.2013.613
14. Coperchini, F., Chiovato, L., Croce, L., Magri, F., & Rotondi, M. 2020. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine & Growth Factor Rev., 53, 25–32. https://doi.org/10.1016/j.cytogfr.2020.05.003
15. Dalgård, C., Benetos, A., Verhulst, S., Labat, C., Kark, J. D., Christensen, K., Kimura, M., Kyvik, K. O., & Aviv, A. 2015. Leukocyte telomere length dynamics in women and men: menopause vs age effects. Int. J. Epidemiol., 44(5), 1688–1695. https://doi.org/10.1093/ije/dyv165
16. Delanghe, J. R., Speeckaert, M. M., & de Buyzere, M. L. 2020. The host’s angiotensin-converting enzyme polymorphism may explain epidemiological findings in COVID-19 infections. Clin. Chim. Acta., 505, 192–193. https://doi.org/10.1016/j.cca.2020.03.031
17. Diao, B., Wang, C., Tan, Y., Chen, X., Liu, Y., Ning, L., Chen, L., Li, M., Liu, Y., Wang, G., Yuan, Z., Feng, Z., Zhang, Y., Wu, Y., & Chen, Y. 2020. Reduction and Functional Exhaustion of T Cells in Patients with Coronavirus Disease 2019 (COVID-19). Front. Immunol., 11. https://doi.org/10.3389/fimmu.2020.00827
18. Dong, L., Hu, S., & Gao, J. 2020. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. Ther., 14(1), 58–60. https://doi.org/10.5582/ddt.2020.01012
19. Duerr, R. H., Taylor, K. D., Brant, S. R., Rioux, J. D., Silverberg, M. S., Daly, M. J., Steinhart, A. H., Abraham, C., Regueiro, M., Griffiths, A., Dassopoulos, T., Bitton, A., Yang, H., Targan, S., Datta, L. W., Kistner, E. O., Schumm, L. P., Lee, A. T., Gregersen, P. K., … Cho, J. H. 2006. A Genome-Wide Association Study Identifies IL23R as an Inflammatory Bowel Disease Gene. Science, 314(5804), 1461–1463. https://doi.org/10.1126/science.1135245
20. Faure, E., Poissy, J., Goffard, A., Fournier, C., Kipnis, E., Titecat, M., Bortolotti, P., Martinez, L., Dubucquoi, S., Dessein, R., Gosset, P., Mathieu, D., & Guery, B. 2014. Distinct Immune Response in Two MERS-CoV-Infected Patients: Can We Go from Bench to Bedside? PLoS One, 9(2), e88716. https://doi.org/10.1371/journal.pone.0088716
21. Guo, Y.-R., Cao, Q.-D., Hong, Z.-S., Tan, Y.-Y., Chen, S.-D., Jin, H.-J., Tan, K.-S., Wang, D.-Y., & Yan, Y. 2020. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil. Med. Res., 7(1), 11. https://doi.org/10.1186/s40779-020-00240-0
22. Guzzi, P. H., Mercatelli, D., Ceraolo, C., & Giorgi, F. M. 2020. Master Regulator Analysis of the SARS-CoV-2/Human Interactome. J. Clin. Med., 9(4), 982. https://doi.org/10.3390/jcm9040982
23. Harrington, L. E., Hatton, R. D., Mangan, P. R., Turner, H., Murphy, T. L., Murphy, K. M., & Weaver, C. T. 2005. Interleukin 17–producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol., 6(11), 1123–1132. https://doi.org/10.1038/ni1254
24. Helby, J., Nordestgaard, B. G., Benfield, T., & Bojesen, S. E. 2017. Shorter leukocyte telomere length is associated with higher risk of infections: a prospective study of 75,309 individuals from the general population. Haematologica, 102(8), 1457–1465. https://doi.org/10.3324/haematol.2016.161943
25. Hojyo, S., Uchida, M., Tanaka, K., Hasebe, R., Tanaka, Y., Murakami, M., & Hirano, T. 2020. How COVID-19 induces cytokine storm with high mortality. Inflam. Regen., 40(1), 37. https://doi.org/10.1186/s41232-020-00146-3
26. Hsu, L. Y., Chia, P. Y., & Lim, J. F. 2020. The novel coronavirus (SARS-CoV-2) pandemic. Ann. Acad. Med. Singapore, 49(3), 105–107.
27. Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
28. Isailovic, N., Daigo, K., Mantovani, A., & Selmi, C. 2015. Interleukin-17 and innate immunity in infections and chronic inflammation. J. Autoimmun., 60, 1–11. https://doi.org/10.1016/j.jaut.2015.04.006
29. Jaszczura, M., Mizgała-Izworska, E., Świętochowska, E., & Machura, E. 2019. Serum levels of selected cytokines [interleukin (IL)-17A, IL-18, IL-23] and chemokines (RANTES, IP10) in the acute phase of immunoglobulin A vasculitis in children. Rheumatol. Int., 39(11), 1945–1953. https://doi.org/10.1007/s00296-019-04415-4
30. Jose, R. J., & Manuel, A. 2020. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Resp. Med., 8(6), e46–e47. https://doi.org/10.1016/S2213-2600(20)30216-2
31. Klompas, M. 2020. Coronavirus Disease 2019 (COVID-19): Protecting Hospitals from the Invisible. Ann. Intern. Med., 172(9), 619–620. https://doi.org/10.7326/M20-0751
32. Li, G., Fan, Y., Lai, Y., Han, T., Li, Z., Zhou, P., Pan, P., Wang, W., Hu, D., Liu, X., Zhang, Q., & Wu, J. 2020. Coronavirus infections and immune responses. J. Med. Virol., 92(4), 424–432. https://doi.org/10.1002/jmv.25685
33. Liu, J.-P. 2014. Molecular mechanisms of ageing and related diseases. Clin. Exp. Pharmacol. Physiol., 41(7), 445–458. https://doi.org/10.1111/1440-1681.12247
34. Liu, Y., Zhang, C., Huang, F., Yang, Y., Wang, F., Yuan, J., Zhang, Z., Qin, Y., Li, X., Zhao, D., Li, S., Tan, S., Wang, Z., Li, J., Shen, C., Li, J., Peng, L., Wu, W., Cao, M., … Jiang, C. 2020. Elevated plasma levels of selective cytokines in COVID-19 patients reflect viral load and lung injury. Natl. Sci. Rev., 7(6), 1003–1011. https://doi.org/10.1093/nsr/nwaa037
35. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. 2013. The Hallmarks of Aging. Cell, 153(6), 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039
36. Malavolta, M., Giacconi, R., Brunetti, D., Provinciali, M., & Maggi, F. 2020. Exploring the Relevance of Senotherapeutics for the Current SARS-CoV-2 Emergency and Similar Future Global Health Threats. Cells, 9(4), 909. https://doi.org/10.3390/cells9040909
37. McGeachy, M. J., Cua, D. J., & Gaffen, S. L. 2019. The IL-17 Family of Cytokines in Health and Disease. Immunity, 50(4), 892–906. https://doi.org/10.1016/j.immuni.2019.03.021
38. McInnes, I. B., & Schett, G. 2017. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet, 389(10086), 2328–2337. https://doi.org/10.1016/S0140-6736(17)31472-1
39. Mikacenic, C., Hansen, E. E., Radella, F., Gharib, S. A., Stapleton, R. D., & Wurfel, M. M. 2016. Interleukin-17A Is Associated with Alveolar Inflammation and Poor Outcomes in Acute Respiratory Distress Syndrome. Crit. Care Med., 44(3), 496–502. https://doi.org/10.1097/CCM.0000000000001409
40. Ministry of National Health Services Regulations & Coordination Pakistan. 2022. COVID Health Advisory Platform. Available at: https://covid.gov.pk/stats/pakistan (Accessed 26 Mar 2022)
41. Nettle, D., Monaghan, P., Gillespie, R., Brilot, B., Bedford, T., & Bateson, M. 2015. An experimental demonstration that early-life competitive disadvantage accelerates telomere loss. Proc. R. Soc. B Biol. Sci., 282(1798), 20141610. https://doi.org/10.1098/rspb.2014.1610
42. Okuda, K., Bardeguez, A., Gardner, J. P., Rodriguez, P., Ganesh, V., Kimura, M., Skurnick, J., Awad, G., & Aviv, A. 2002. Telomere Length in the Newborn. Pediatr. Res., 52(3), 377–381. https://doi.org/10.1203/00006450-200209000-00012
43. Palm, W., & de Lange, T. 2008. How Shelterin Protects Mammalian Telomeres. Annu. Rev. Genet., 42(1), 301–334. https://doi.org/10.1146/annurev.genet.41.110306.130350
44. Perlman, S., & Netland, J. 2009. Coronaviruses post-SARS: update on replication and pathogenesis. Nat. Rev. Microbiol., 7(6), 439–450. https://doi.org/10.1038/nrmicro2147
45. Qin, C., Zhou, L., Hu, Z., Zhang, S., Yang, S., Tao, Y., Xie, C., Ma, K., Shang, K., Wang, W., & Tian, D.-S. 2020. Dysregulation of Immune Response in Patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis., 71(15), 762–768. https://doi.org/10.1093/cid/ciaa248
46. Ranucci, M., Ballotta, A., di Dedda, U., Baryshnikova, E., Dei Poli, M., Resta, M., Falco, M., Albano, G., & Menicanti, L. 2020. The procoagulant pattern of patients with COVID‐19 acute respiratory distress syndrome. J. Thromb. Haemost., 18(7), 1747–1751. https://doi.org/10.1111/jth.14854
47. Rose-John, S. 2012. IL-6 Trans-Signaling via the Soluble IL-6 Receptor: Importance for the Pro-Inflammatory Activities of IL-6. Int. J. Biol. Sci., 8(9), 1237–1247. https://doi.org/ 10.7150/ijbs.4989
48. Rothan, H. A., & Byrareddy, S. N. 2020. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun., 109, 102433. https://doi.org/10.1016/j.jaut.2020 .102433
49. Sadava, D. E., Hillis, D. M., & Heller, H. C. 2009. Life: the science of biology (Vol. 2). Macmillan.
50. Sardu, C., Gambardella, J., Morelli, M. B., Wang, X., Marfella, R., & Santulli, G. 2020. Hypertension, Thrombosis, Kidney Failure, and Diabetes: Is COVID-19 an Endothelial Disease? A Comprehensive Evaluation of Clinical and Basic Evidence. J. Clin. Med., 9(5), 1417. https://doi.org/10.3390/jcm9051417
51. She, J., Jiang, J., Ye, L., Hu, L., Bai, C., & Song, Y. 2020. 2019 novel coronavirus of pneumonia in Wuhan, China: emerging attack and management strategies. Clin. Transl. Med., 9(1). https://doi.org/10.1186/s40169-020-00271-z
52. Srivastava, M., Eidelman, O., Zhang, J., Paweletz, C., Caohuy, H., Yang, Q., Jacobson, K. A., Heldman, E., Huang, W., Jozwik, C., Pollard, B. S., & Pollard, H. B. 2004. Digitoxin mimics gene therapy with CFTR and suppresses hypersecretion of IL-8 from cystic fibrosis lung epithelial cells. Proc. Natl. Acad. Sci., 101(20), 7693–7698. https://doi.org/10.1073/ pnas.0402030101
53. Tanaka, T., Narazaki, M., & Kishimoto, T. 2014. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol., 6(10), a016295–a016295. https://doi.org/10.1101/ cshperspect.a016295
54. Thevarajan, I., Nguyen, T. H. O., Koutsakos, M., Druce, J., Caly, L., van de Sandt, C. E., Jia, X., Nicholson, S., Catton, M., Cowie, B., Tong, S. Y. C., Lewin, S. R., & Kedzierska, K. 2020. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nat. Med., 26(4), 453–455. https://doi.org/10.1038/s41591-020-0819-2
55. Tian, S., Hu, N., Lou, J., Chen, K., Kang, X., Xiang, Z., Chen, H., Wang, D., Liu, N., Liu, D., Chen, G., Zhang, Y., Li, D., Li, J., Lian, H., Niu, S., Zhang, L., & Zhang, J. 2020. Characteristics of COVID-19 infection in Beijing. J. Infect., 80(4), 401–406. https://doi.org/10.1016/j.jinf.2020.02.018
56. Tsilingiris, D., Tentolouris, A., Eleftheriadou, I., & Tentolouris, N. 2020. Telomere length, epidemiology and pathogenesis of severe COVID‐19. Eur. J. Clin. Invest., 50(10). https://doi.org/10.1111/eci.13376
57. Wan, S., Yi, Q., Fan, S., Lv, J., Zhang, X., Guo, L., Lang, C., Xiao, Q., Xiao, K., Yi, Z., Qiang, M., Xiang, J., Zhang, B., & Chen, Y. 2020. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP). MedRxiv, 2020.02.10.20021832. https://doi.org/10.1101/2020.02.10. 20021832
58. Wang, J., Hajizadeh, N., Moore, E. E., McIntyre, R. C., Moore, P. K., Veress, L. A., Yaffe, M. B., Moore, H. B., & Barrett, C. D. 2020. Tissue plasminogen activator (tPA) treatment for COVID‐19 associated acute respiratory distress syndrome (ARDS): A case series. J. Thromb. Haemost., 18(7), 1752–1755. https://doi.org/10.1111/jth.14828
59. Weng, N. P., Levine, B. L., June, C. H., & Hodes, R. J. 1995. Human naive and memory T lymphocytes differ in telomeric length and replicative potential. Proc. Natl. Acad. Sci., 92(24), 11091–11094. https://doi.org/10.1073/pnas.92.24.11091
60. Witzany, G. 2008. The Viral Origins of Telomeres and Telomerases and their Important Role in Eukaryogenesis and Genome Maintenance. Biosemiotics, 1(2), 191–206. https://doi.org/10.1007/s12304-008-9018-0
61. Wolpe, S. D., & Cerami, A. 1989. Macrophage inflammatory proteins 1 and 2: members of a novel superfamily of cytokines. FASEB J., 3(14), 2565–2573. https://doi.org/10.1096/fasebj. 3.14.2687068
62. World Health Organization. 2022. WHO Coronavirus (COVID-19) Dashboard. Available at: https://covid19.who.int/ (Accessed 26 Mar 2022)
63. Wu, D., & Yang, X. O. 2020. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. J. Microbiol., Immunol. Infect., 53(3), 368–370. https://doi.org/10.1016/j.jmii.2020.03.005
64. Zhang, J., & Bai, C. 2017. Elevated serum interleukin-8 level as a preferable biomarker for identifying uncontrolled asthma and glucocorticosteroid responsiveness. Tanaffos, 16(4), 260.
65. Zhang, T., Wu, Q., & Zhang, Z. 2020. Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak. Curr. Biol., 30(7), 1346-1351.e2. https://doi.org/10.1016/j.cub. 2020.03.022
66. Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., … Shi, Z.-L. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41 586-020-2012-7
67. Zhou, Y., Fu, B., Zheng, X., Wang, D., Zhao, C., Qi, Y., Sun, R., Tian, Z., Xu, X., & Wei, H. 2020. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. Natl. Sci. Rev., 7(6), 998–1002. https://doi.org/10.1093/nsr/nwaa041

Most read articles by the same author(s)