MICRONEEDLES AS A SMART APPROACH FOR TRANSDERMAL DRUG DELIVERY

Main Article Content

Kiran Sharma
Dr. Shweta Paroha
Dr. Pragnesh Patni

Keywords

Microneedles technology, transdermal drug delivery, permeation enhancement, minimally invasive

Abstract

Transdermal drug delivery systems (TDDS) have gained significant attention as an alternative to conventional routes of drug administration due to their ability to bypass first-pass metabolism, provide sustained release, and enhance patient compliance. However, the stratum corneum acts as a major barrier to effective drug permeation. Microneedle (MN) technology has emerged as a promising strategy to overcome this limitation by creating microscopic channels in the skin that facilitate drug transport without causing pain or significant tissue damage. This review highlights the fundamentals of microneedle technology, including its types—solid, coated, hollow, dissolving, and hydrogel-forming microneedles—along with the materials commonly employed for fabrication, such as silicon, metals, ceramics, and biodegradable polymers. The applications of MNs span diverse fields, ranging from vaccine delivery and insulin administration to cancer therapy and cosmetic treatments. Current trends in microneedle research emphasize advanced materials, smart drug delivery systems, and integration with nanotechnology and biosensors for personalized medicine. Advantages of MN-based systems include minimal invasiveness, improved patient compliance, enhanced bioavailability, and the potential for self-administration. Overall, microneedle technology represents a rapidly evolving platform with immense potential to revolutionize transdermal drug delivery and future therapeutic strategies.

Abstract 0 | Pdf Downloads 0

References

1. Marwah H., Garg T., Goyal A. K., & Rath G, “Permeation enhancer strategies in transdermal drug delivery.” Drug Deliv.,2014, 23(2), 564–578. https://doi.org/10.3109/10717544.2 014.935532
2. M Chen, G Quan, Y Sun, D Yang, X Pan, C Wu, “Nanoparticles-encapsulated polymeric microneedles for transdermal drug delivery.” J. Contr. Release, 2020,325, 163-175.
3. Dharadhara S, Majumdara A, Dhobleb S, Patravaleb V, “Microneedles for transdermal drug delivery: a systematic review.” Drug Dev. Ind. Pharm., 2019, 45(2), 188-201, DOI: 10.1080/03639045.2018.1539497
4. D. Yang, M. Chen, Y. Sun et al., “Microneedle-mediated transdermal drug delivery for treating diverse skin diseases.” Acta Biomater., 2020, 9(13), 1-15. https://doi.org/10.1016/ j.actbio.2020.12.004
5. Zhang X, Chen G, Yu Y, Sun L, Zhao Y., “Bioinspired adhesive and antibacterial microneedles for versatile transdermal drug delivery”. Research 2020, 2020(3672120).
6. Yang L, Liu Q, Wang X, Gao N, Li X, Chen H, et al., “Actively separated microneedle patch for sustained-release of growth hormone to treat growth hormone deficiency.” Acta Pharm Sin B 2023, 13(344e58).
7. Yu J, Wang J, Zhang Y, Chen G, Mao W, Ye Y, et al. “Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs.” Nat Biomed Eng., 2020, 4, 499-506.
8. Chen Z, He J, Qi J, Zhu Q, Wu W, Lu Y, “Long-acting microneedles: a progress report of the state-of-the-art techniques.” Drug Discov Today, 2020;,25, 1462-8.
9. M.S. Gerstel, V.A. Place, Drug delivery device, US, 1976.
10. Henry, D.V. McAllister, M.G. Allen, M.R. Prausnitz, “Microfabricated microneedles: a novel approach to transdermal drug delivery.” 1998, 88(9), 948.
11. S.M. Bal, J. Caussin, S. Pavel, J.A. Bouwstra, “In vivo assessment of safety of microneedle arrays in human skin.” Eur. J. Pharm Sci. 2008, 35(3), 193–202.
12. Waghulea T. et al., “Microneedles: A smart approach and increasing potential for transdermal drug delivery system” Biomedicine & Pharmacotherapy, 2019, 1249–1258.
13. J. Li, M. Zeng, H. Shan, C. Tong, “Microneedle patches as drug and vaccine delivery platform.” Curr. Med. Chem. 2017, 24(22), 2413–2422.
14. M. S. Gerstel and V. A. Place, Drug delivery device. US Patent 3, 482, 1976.
15. M. T. Hoang, K. B. Ita, and D. A. Bair, “Solid microneedles for transdermal delivery of amantadine hydrochloride and pramipexole dihydrochloride.” Pharmaceutics, 2015,7(4), 379-396. doi:10.3390/pharmaceutics7040379
16. U. Andar, et al., “Microneedle-assisted skin permeation by nontoxic bioengineerable gas vesicle nanoparticles.” Mol. Pharm., 2017, 14(3), 953-958. doi:10.1021/acs.molpharmaceut.6b00859
17. Haj-Ahmad R, et al. “Microneedle Coating Techniques for Transdermal Drug Delivery.” Pharmaceutics. 2015, 7(4), 486-502.doi:10.3390/pharmaceutics7040486
18. Mansoor I, Liu Y, Häfeli UO, Stoeber B, “Arrays of hollow out-of-plane microneedles made by metal electrodeposition onto solvent cast conductive polymer structures.” Journal of Micromechanics and Microengineering. 2013, 23(8):085011. doi:10.1088/0960-1317/23/8/ 085011
19. Vora LK, et al., “Long-acting microneedle formulations.” Advanced Drug Delivery Reviews. 2023,14(12), 5161-5180 doi:10.1016/j.addr.2023.115055
20. Filho D, Guerrero M, Pariguana M, Marican A, Durán-Lara EF, “Hydrogel-Based Microneedle as a Drug Delivery System.” Pharmaceutics. 2023, 15(10), 2444. https://doi.org/10.3390 /pharmaceutics15102444
21. Yao W, Li D, Zhao Y, Zhan Z, Jin G, Liang H, Yang R, “3D Printed Multi-Functional Hydrogel Microneedles Based on High-Precision Digital Light Processing.” Micromachines. 2020, 11(1), 17. https://doi.org/10.3390/mi11010017
22. Wu X, Chen Y, Gui S, et al. “Sinomenine hydrochloride-loaded dissolving microneedles enhanced its absorption in rabbits.” Pharm Dev Technol. 2016, 21(7), 787-793. doi:10.3109/10837450.2015.1055766
23. Wang FY, Chen Y, Huang YY, Cheng CM, “Transdermal drug delivery systems for fighting common viral infectious diseases.” Drug Delivery and Translational Research. 2021, 11(4), 1498-1508.
24. doi:10.1007/s13346-021-01004-6
25. Gupta J, Felner EI, Prausnitz MR, “Minimally Invasive Insulin Delivery in Subjects with Type 1 Diabetes Using Hollow Microneedles.” Diabetes Technology & Therapeutics. 2009, 11(6), 329-337. doi:10.1089/dia.2008.0103
26. Li WZ, Huo MR, Zhou JP, et al., “Super-short solid silicon microneedles for transdermal drug delivery applications.” Int J Pharm. 2010, 389(1-2), 122-129. doi:10.1016/j.ijpharm.2010 .01.024
27. McGrath MG, Vucen S, Vrdoljak A, et al., “Production of dissolvable microneedles using an atomised spray process: effect of microneedle composition on skin penetration.” Eur J Pharm Biopharm. 2014, 86(2), 200-211. doi:10.1016/j.ejpb.2013.04.023
28. Wang QL, Zhang XP, Chen BZ, Guo XD, “Dissolvable layered microneedles with core-shell structures for transdermal drug delivery.” Mater Sci Eng C Mater Biol Appl. 2018, 83, 143-147. doi:10.1016/j.msec.2017.11.009
29. Duong HTT, Kim NW, Thambi T, et al., “Microneedle arrays coated with charge reversal pH-sensitive copolymers improve antigen presenting cells-homing DNA vaccine delivery and immune responses.” J Control Release. 2018, 269, 225-234. doi:10.1016/j.jconrel.2017.11.025
30. Lin Z, Zheng K, Zhong J, Zheng X., “Advances in microneedle-based therapy for bone disorders.” Biomedicine and Pharmacotherapy, 2023, 165(115013). doi:10.1016/j.biopha. 2023.115013
31. Gholami S, Mohebi MM, Hajizadeh Saffar E, Ghanian MH, Zarkesh I, Baharvand H., “Fabrication of microporous inorganic microneedles by centrifugal casting method for transdermal extraction and delivery.” Int J Pharm. 2019, 558, 299-310. doi: 10.1016/j.ijpharm.2018.12.089
32. Jiang X, Chen P, Niu W, Fang R, Chen H, An Y, “Preparation and evaluation of dissolving tofacitinib microneedles for effective management of rheumatoid arthritis.” Eur J Pharm Sci. 2023, 188(106518). doi: 10.1016/j.ejps.2023.106518
33. Koyani RD, “Synthetic polymers for microneedle synthesis: from then to now.” J Drug Deliv Sci Technol. 2020, 60(102071). doi: 10.1016/j.jddst.2020.102071.
34. Azmana M, Mahmood S, Hilles AR, Mandal UK, Saeed Al Japairai KA, Raman S, “Transdermal drug delivery system through polymeric microneedle: a recent update.” J Drug Deliv Sci Technol. 2020, 60(101877). doi: 10.1016/j.jddst.2020.101877
35. Mulkutkar M, Damani M, Sawarkar S, “Polymeric microneedles for the eye: An overview of advances and ocular applications for minimally invasive drug delivery.” European Journal of Pharmaceutics and Biopharmaceutics. 2024, 197:114209. doi:10.1016/j.ejpb.2024.114209
36. Sil D, Bhowmik S, Patel P, Kurmi BD, “Promising role of microneedles in therapeutic and biomedical applications.” Journal of Drug Delivery Science and Technology. 2023, 91(105273). doi:10.1016/j.jddst.2023.105273
37. Ronnander P, Simon L, Spilgies H, Koch A, “Modelling the in-vitro dissolution and release of sumatriptan succinate from polyvinylpyrrolidone-based microneedles.” European Journal of Pharmaceutical Sciences. 2018, 125, 54-63. doi:10.1016/j.ejps.2018.09.010
38. Tomono T., “A new way to control the internal structure of microneedles: a case of chitosan lactate.” Materials Today Chemistry. 2019,13, 79-87. doi:10.1016/j.mtchem.2019.04.009
39. Wu C, Yu Q, Huang C, Li F, Zhang L, Zhu D, “Microneedles as transdermal drug delivery system for enhancing skin disease treatment.” Acta Pharm Sin B. 2024, 14(12), 5161-5180. doi:10.1016/j.apsb.2024.08.013
40. Sadeq MA, Ashry MH, Ghorab RMF, Afify AY, “Causes of death among patients with cutaneous melanoma: a US population-based study.” Sci Rep. 2023,13(1),10257. doi:10.1038/s41598-023-37333-4
41. Jung JH, Chiang B, Grossniklaus HE, Prausnitz MR. “Ocular drug delivery targeted by iontophoresis in the suprachoroidal space using a microneedle.” J Control Release. 2018, 277, 14-22. doi:10.1016/j.jconrel.2018.03.001
42. Donnelly RF, Raj Singh TR, Woolfson AD. “Microneedle-based drug delivery systems: microfabrication, drug delivery, and safety.” Drug Deliv. 2010, 17(4), 187-207. doi:10.3109/10 717541003667798
43. Prausnitz MR, Langer R. “Transdermal drug delivery. “Nat Biotechnol. 2008, 26(11), 1261-1268. doi:10.1038/nbt.1504
44. Ita K. “Transdermal Delivery of Drugs with Microneedles-Potential and Challenges.: Pharmaceutics. 2015, 7(3), 90-105. doi:10.3390/pharmaceutics7030090
45. Makvandi P, Kirkby M, Hutton ARJ, et al. “Engineering Microneedle Patches for Improved Penetration: Analysis, Skin Models and Factors Affecting Needle Insertion.” Nanomicro Lett. 2021, 13(1), 93. doi:10.1007/s40820-021-00611-9
46. Aggarwal P, Johnston CR. “Geometrical effects in mechanical characterizing of microneedle for biomedical applications.” Sens. Actuat. B: Chem. 2004, 102, 226–234. doi: 10.1016/ j.snb.2004.04.024
47. Al-Qallaf B, Das DB, Davidson A. “Transdermal drug delivery by coated microneedles: geometry effects on drug concentration in blood.” Asia-Pacific J. Chem. Eng. 2009, 4, 845–857. doi: 10.1002/apj.353
48. Zoudani, E.L.; Soltani, M. “A new computational method of modeling and evaluation of dissolving microneedle for drug delivery applications: Extension to theoretical modeling of a novel design of microneedle (array in array) for efficient drug delivery.” Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2020, 150, 105339
49. O’Mahony, C. “Structural characterization and in-vivo reliability evaluation of silicon microneedles.” Biomed. Microdevices 2014, 16, 333–343.
50. Zhu,D.D., Zhang, X.P., Zhang, B.L., Hao, Y.Y., Guo, X.D. “Safety Assessment of Microneedle Technology for Transdermal Drug Delivery: A Review.” Adv. Ther. 2020, 3, 2000033.
51. Permana, A.D.; Nainu, F.; Moffatt, K.; Larrañeta, E.; Donnelly, R.F, “Recent advances in combination of microneedles and nanomedicines for lymphatic targeted drug delivery.” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnology 2021, 13, e1690.
52. Avcil M, Çelik A., “Microneedles in Drug Delivery: Progress and Challenges.” Micromachines (Basel). 2021, 12(11), 1321. doi:10.3390/mi12111321

Most read articles by the same author(s)