A REVIEW ON ANALYTICAL METHODS FOR ESTIMATION OF A FIX DOSE COMBINATION OF CIPROFLOXACIN AND CELECOXIB

Main Article Content

Khushi B. Patel
Dr. Neha Tiwari
Dr. Pragnesh Patani

Keywords

Ciprofloxacin, Celecoxib, Fixed-dose combination, PrimeC, Analytical methods, RP-HPLC, LC–MS/MS, UV–Vis spectrophotometry, Green analytical chemistry, Amyotrophic lateral sclerosis, Method validation

Abstract

In pharmaceutical development, fixed-dose combinations (FDCs) have drawn more attention due to their ability to reduce pill burden, enhance patient compliance, and produce synergistic therapeutic effects. A promising medication combination for the treatment of antimicrobial therapy complicated by inflammation, such as in antibiotic-loaded scaffolds (ALS) and infection-associated pain, is celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, and ciprofloxacin, a fluoroquinolone antibiotic. Due to variations in chemical structure, polarity, solubility, and UV absorption properties, analytical estimation of such a combination presents difficulties. The chemical and pharmacological profiles of celecoxib and ciprofloxacin, their combined therapeutic justification, and the analytical ramifications of creating reliable estimation techniques are all critically summarized in this review. With a focus on spectrophotometric, chromatographic, and advanced hyphenated methods, reported analytical techniques for both individual and combined estimation are examined. Since it is still the most dependable, sensitive, and repeatable method for simultaneously quantifying these medications in bulk, formulations, and biological matrices, special attention is paid to reverse-phase high-performance liquid chromatography (RP-HPLC). In order to overcome analytical difficulties and guarantee precision, adherence to regulations, and clinical suitability in fixed-dose combinations, the review also identifies potential approaches for method development and validation.


 
Abstract 0 | PDF Downloads 0

References

1. Brown RH, Jr., Al-Chalabi A. Amyotrophic lateral sclerosis. N Engl J Med. 2017;377:1602.
2. Liu J, Wang F. Role of neuroinflammation in amyotrophic lateral sclerosis: cellular mechanisms and therapeutic implications. Front Immunol. 2017;8:1005.
3. Hooper DC, Jacoby GA. Mechanisms of action and resistance of older and newer fluoroquinolones. Clin Infect Dis. 2016;63(9)\:S113–20.
4. DrugBank Online. Ciprofloxacin (DB00537) \[Internet]. Edmonton (AB): DrugBank; c2024 [cited 2025 Aug 21].
5. Cohen B, Bariani GM. Celecoxib. In: StatPearls \[Internet]. Treasure Island (FL): StatPearls Publishing; 2024
6. Ahmed AB, Ali ME, El-Zanfaly HT, et al. Innovative synchronous spectrofluorometric method for assessing a novel drug combination of celecoxib and ciprofloxacin. Spectrochim Acta A Mol Biomol Spectrosc. 2025;313:122899.
7. PubChem. Ciprofloxacin \[Internet]. Bethesda (MD): National Library of Medicine; \[cited 2025 Aug 21].
8. Bąk U, Żuk K, Machnik G, et al. Challenges and opportunities for celecoxib repurposing. Pharm Res. 2023;40(10):2495–516.
9. Tozar T, Totir N, Munteanu FD, et al. Optical characterization of ciprofloxacin photolytic decomposition. Int J Mol Sci. 2021;22(8):4049.
10. Attimarad M, Venugopala KN, Sreeharsha N, Aldhubiab BE, Nair AB. Development of UV-spectrophotometry methods for concurrent quantification of amlodipine and celecoxib by ratio spectra manipulation. PLoS One. 2019;14(9)\:e0222526.
11. Pena-Pereira F, Wojnowski W, Tobiszewski M. AGREE—Analytical GREEnness Metric Approach and software. Anal Chem. 2020;92(14):10076–82.
12. Salomon-Zimri S, Pushett A, Russek-Blum N, Van Eijk RPA, Birman N, Abramovich B, et al. Combination of ciprofloxacin/celecoxib as a novel therapeutic strategy for ALS. Amyotroph Lateral Scler Frontotemporal Degener. 2023 May;24(3–4):263–271.
13. ClinicalTrials.gov. Ciprofloxacin/Celecoxib Combination in Patients With ALS (PrimeC). Ixdentifier: NCT04090684.
14. Sweetman SC, editor. Martindale: The Complete Drug Reference. 36th ed. London: Pharmaceutical Press; 2009. p. 208–210.Bąk-Kuchejda U, Krupa A. Challenges and opportunities for celecoxib repurposing. Pharm Res. 2023;40(11):2353–2375.
15. Yang Y, Geng Y, Cheng X, Gao J, Shi Z, Zhao M. Cyclooxygenase-2 contributes to hypoxia-induced aggravation of neuroinflammation in microglia: attenuation by celecoxib. Exp Ther Med. 2023 Mar;25(3):123.
16. Ahmed-Anwar AA, Mohamed MA, Farghali AA, Mahmoud R, Hassouna MEM. Green UPLC method for estimation of ciprofloxacin, diclofenac sodium and ibuprofen with application to pharmacokinetic study of human samples. Sci Rep. 2023;13:17613.
17. Kośka I, Purgat K, Głowacki R, Kubalczyk P. Simple, fast and reliable capillary zone electrophoresis method for simultaneous determination of ciprofloxacin and ofloxacin in animal tissues using transient pseudo-isotachophoresis. Sci Rep. 2022;12:12586.
18. Radovanović M, Day RO, Jones GDR, Galettis P, Norris RLG, et al. LC–MS/MS method for simultaneous quantification of ten antibiotics in human plasma for routine therapeutic drug monitoring. J Mass Spectrom Adv Clin Lab. 2022;24:100454
19. Ramadan L, et al. LC–MS/MS method for simultaneous determination of emerging contaminants in water — environmental template including ciprofloxacin (2024).
20. Zheng X, Fu B, Li H. A highly stable, rapid and sensitive fluorescent probe for ciprofloxacin based on Al3+-enhanced fluorescence of gold nanoclusters. Sens Actuators B Chem. 2021;346:130502.
21. Mahmoud TY. Colorimetric spectrophotometric method for quantification of ciprofloxacin using sodium nitroprusside reagent. Methods (MDPI). 2024;59:164.
22. Li, S., Wang, H., Wang, J., Xu, F., & Li, H. (2024). Preparation of molecular imprinted fluorescence sensor based on Er3+/ZnS QDs and its selective detection of ciprofloxacin in various matrices. PloS one, 19(12), e0312156.
23. Arslan A, Yet B, Nemutlu E, Akdağ Çaylı Y, Eroğlu H, Öner L. Celecoxib nanoformulations with enhanced solubility, dissolution rate, and oral bioavailability. Pharmaceutics. 2023 Feb;15(2):363.
24. Abdulla A, Rogouti O, Hunfeld NGM, Endeman R, Dijkstra A, van Gelder T, et al. Population pharmacokinetics and target attainment of ciprofloxacin in critically ill patients. Eur J Clin Pharmacol. 2020 Jul;76(7):957–967.
25. Junkert AM, Lazo REL, Deffert F, Carneiro J, Borba HHL, de Campos ML, Pontarolo R. Pharmacokinetics of oral ciprofloxacin in adult patients: a scoping review. Br J Clin Pharmacol. 2024 Feb;90(2):528–547.
26. Androne A, Mogosanu G, et al. A comprehensive study of a new 1.75-hydrate of ciprofloxacin: solid-state characterization and pH-dependent UV behaviour (λmax shifts). Crystals. 2020 May;10(5):349.
27. Time T. (2020) celecoxib AQbD impurities.
28. Qin Z, et al. Improved UHPLC-MS method for celecoxib quantitation in serum — 2023. Bioanalysis. 2023.
29. Zhu Y, et al. Revealing changes in celecoxib nanostructured lipid carrier's bioavailability using hyaluronic acid as an enhancer by HPLC–MS/MS. Pharmaceuticals. 2024;17:11296516.
30. Attimarad M, et al. Validation of rapid RP-HPLC method for concurrent estimation of amlodipine and celecoxib in formulations. J Pharm Biomed Anal. 2020.
31. Ramadan HS, et al. Eco-friendly simultaneous multi-spectrophotometric methods for co-formulated celecoxib and tramadol in tablets. Sci Rep. 2023;13.
32. Jarosz M, et al. Controlled delivery of celecoxib—β-cyclodextrin inclusion complexes: HPLC quantitation method. Pharmaceutics. 2023;15(7):1861.
33. Malode SJ, et al. Nanomaterial-based electrochemical sensors for pharmaceutical detection: review including celecoxib examples. Sensors (Basel). 2024;12(11):234.
34. Kośka I, Purgat K, Głowacki R, Kubalczyk P. Simultaneous determination of ciprofloxacin and ofloxacin in animal tissues with the use of capillary electrophoresis with transient pseudo-isotachophoresis. Molecules. 2021 Nov 17;26(22):6931.
35. Shewale RS, Gomte SS, Jain A. A sustainable RP‐HPLC method for concurrent estimation of capecitabine and celecoxib in liposomal formulation: Greenness and whiteness appraisal. Archiv der Pharmazie. 2024 Dec;357(12):2400632.
36. Alqahtani A, Alqahtani T, Al Fatease A, Tolba EH. Rapid UV-Vis spectrophotometric method aided by firefly-PLS models for simultaneous quantification of ciprofloxacin, lomefloxacin and enrofloxacin: greenness and blueness assessment. BMC Chem. 2024 Sep;18(1):172.
37. Jaruratanasirikul S, Wongpoowarak W, Wattanavijitkul T, Tangkitwanitjaroen K, Sukarnjanaset W, Samaeng M, et al. Population pharmacokinetics and Monte Carlo dosing simulations of ciprofloxacin. Antimicrob Agents Chemother. 2020;64(7):e02562-19.
38. Iftikhar S, Shakeel S, Ahmad I, Yousuf RI, Tariq I, Rauf A, et al. Development and validation of an LC–MS/MS method for simultaneous quantification of ciprofloxacin, moxifloxacin, and levofloxacin in human plasma: application to therapeutic drug monitoring. J Chromatogr B. 2021;1173:122683.
39. Campanha NH, Assunção NA, Vieira BLC, De Souza AM, Murakami FS, Pechansky F, et al. Development and validation of an HPLC–FLD–DAD method for the determination of levofloxacin, ciprofloxacin, moxifloxacin and gemifloxacin in human plasma and urine. J Pharm Biomed Anal. 2021;199:114032.
40. Ramadan HS, et al. Eco-friendly simultaneous multi-spectrophotometric methods for co-formulated celecoxib and tramadol in tablets. Sci Rep. 2023;13.
41. Chuiprasert J, et al. Ciprofloxacin electrochemical sensor using copper–iron/rGO composite: differential pulse voltammetry detection. ACS Omega. 2024;9.
42. Elgendy KM, El–Shahawy O, et al. Rapid HPLC determination of ciprofloxacin and related fluoroquinolones. J Pharm Anal. 2023;13.
43. Malode SJ, et al. Nanomaterial-based electrochemical sensors for pharmaceutical detection: review including celecoxib examples. Sensors (Basel). 2024;12(11):234.
44. Radovanovic, M., Day, R. O., Jones, G. D. R., Galettis, P., & Norris, R. L. G. (2022). LC-MS/MS method for simultaneous quantification of ten antibiotics in human plasma for routine therapeutic drug monitoring. Journal of mass spectrometry and advances in the clinical lab, 26, 48–59.
45. Jaruratanasirikul S, Wongpoowarak W, Wattanavijitkul T, Tangkitwanitjaroen K, Sukarnjanaset W, Samaeng M, et al. Population pharmacokinetics and Monte Carlo dosing simulations of ciprofloxacin. Antimicrob Agents Chemother. 2020;64(7):e02562-19.
46. Iftikhar S, Shakeel S, Ahmad I, Yousuf RI, Tariq I, Rauf A, et al. Development and validation of an LC–MS/MS method for simultaneous quantification of ciprofloxacin, moxifloxacin, and levofloxacin in human plasma: application to therapeutic drug monitoring. J Chromatogr B. 2021;1173:122683.
47. Campanha NH, Assunção NA, Vieira BLC, De Souza AM, Murakami FS, Pechansky F, et al. Development and validation of an HPLC–FLD–DAD method for the determination of levofloxacin, ciprofloxacin, moxifloxacin and gemifloxacin in human plasma and urine. J Pharm Biomed Anal. 2021;199:114032.
48. Van der Meer JW, Brüggemann RJ, Uges DR, Alffenaar JW. A fast LC–MS/MS method for quantification of ten antimicrobials in human plasma including ciprofloxacin. Ther Drug Monit. 2022;44(1):67–75.
49. Mukkanti Eswarudu M, Lakshmana Rao A, Vijay K. Novel validated LC-MS/MS method for simultaneous estimation of celecoxib and amlodipine in rat plasma and its application to a pharmacokinetic study. J Pharm Negative Results. 2022;13(Special Issue 09):3882–3895.
50. Desai SM, Dalwadi H, Viradiya D. Development and validation of RP-HPLC method for simultaneous estimation of cefpodoxime proxetil and levofloxacin hemihydrate in combined dosage form. International Journal of Pharmaceutical Sciences and Research. 2016;7(9):3742–3748.
51. Prajapati, P., Patel, A., & Shah, S. (2023). Simultaneous Estimation of Telmisartan, Chlorthalidone, Amlodipine Besylate and Atorvastatin by RP-HPLC Method for Synchronous Assay of Multiple FDC Products Using Analytical FMCEA-Based AQbD Approach. Journal of chromatographic science, 61(2), 160–171.
52. Radovanovic, M., Day, R. O., Jones, G. D. R., Galettis, P., & Norris, R. L. G. (2022). LC-MS/MS method for simultaneous quantification of ten antibiotics in human plasma for routine therapeutic drug monitoring. Journal of mass spectrometry and advances in the clinical lab, 26, 48–59.
53. Liu L, Zhang L, Zheng X, Liu X, Liu W and Wu J LC–MS/MS-based multiplex antibacterial platform for therapeutic drug monitoring in intensive care unit patients. Front. Pharmacol. 2023.
54. Kavathia, A. Development and validation of RP-HPLC and UV-spectrophotometric methods for rapid simultaneous estimation of amlodipine and benazepril in pure and fixed dose combination. Arabian Journal of Chemistry.
55. Celia, C., Di Marzio, L., Locatelli, M., Ramundo, P., D’Ambrosio, F., & Tartaglia, A. (2020). Current Trends in Simultaneous Determination of Co-Administered Drugs. Separations, 7(2), 29.
56. Almalki, A. H., Alzhrani, R. M., Alosaimi, M. E., Abduljabbar, M. H., Alaqel, S. L., Alharbi, A., & Ramzy, S. (2024). Spectrophotometric determination of celecoxib and tramadol in the new approved formulated dosage form using principle component regression assistive model. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 320, 124614.
57. Fraiman A, Ziegler L. Ultra-rapid Antibiotic Susceptibility Testing via SERS. arXiv. 2024
58. Li, Z., Du, X., Tian, S., Fan, S., Zuo, X., Li, Y., Wang, R., Wang, B., & Huang, Y. (2022). Pharmacokinetic herb-drug interactions: Altered systemic exposure and tissue distribution of ciprofloxacin, a substrate of multiple transporters, after combined treatment with Polygonum capitatum Buch.-Ham. ex D. Don extracts. Frontiers in pharmacology, 13, 1033667

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 7 8 > >>