INSULYSIN INHIBITORS AS NOVEL ANTI-DIABETIC AGENTS: FROM COMPUTATIONAL DESIGN TO PRE-CLINICAL VALIDATION
Main Article Content
Keywords
Insulysin inhibitors, Insulin-degrading enzyme, Anti-diabetic, In-silico drug design, STZ-NAD diabetic model, Type 2 diabetes
Abstract
Background: Diabetes mellitus is a health crisis that has been increasing worldwide in prevalence and has fewer treatment options. The enzyme insulysin (also called insulin-degrading enzyme, IDE) is also important in insulin metabolism and glucose homeostasis. New insulysin inhibitors are coming up as effective therapeutic agents in the management of diabetes.
Objective: This review assesses the potential to use novel insulinase inhibitors as anti-diabetic agents using an integrated approach involving computational and experimental methods in streptozotocin-nicotinamide induced diabetic rat models.
Methods: An extensive literature review was done with the help of such databases as PubMed, Scopus, and Web of Science that included publications dated 2015-2024. Inlay terms were insulin degrading enzyme, insulin-degrading enzyme, in-silico and STZ-NAD diabetic model.
Results: The existing data indicates that insulinase inhibitors show great anti-diabetic effects in a variety of mechanisms such as the increased insulin sensitivity, improved β-cell act, and decreased insulin degradation. In-silico research indicates potential binding affinities and pharmacokinetic characteristics whereas in-vivo research in STZ-NAD models demonstrates better glycemic control and morphology of the pancreas.
Conclusion: Novel insulinase inhibitors offer a perspective in treating diabetes and a combination of in- Silico and in-vivo studies offers a great strength to the clinical efficacy of the compound.
References
2. International Diabetes Federation. IDF Diabetes Atlas, 10th ed. Brussels, Belgium: International Diabetes Federation; 2021.
3. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88-98.
4. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach. Diabetes Care. 2015;38(1):140-149.
5. DeFronzo RA, Eldor R, Abdul-Ghani M. Pathophysiologic approach to therapy in patients with newly diagnosed type 2 diabetes. Diabetes Care. 2013;36(Suppl 2):S127-S138.
6. Leissring MA, Farris W, Chang AY, et al. Enhanced proteolysis of β-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron. 2003;40(6):1087-1093.
7. Duckworth WC, Bennett RG, Hamel FG. Insulin degradation: progress and potential. Endocr Rev. 1998;19(5):608-624.
8. Malito E, Hulse RE, Tang WJ. Amyloid β-degrading cryptidases: insulin degrading enzyme, presequence peptidase, and neprilysin. Cell Mol Life Sci. 2008;65(16):2574-2585.
9. Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov. 2004;3(11):935-949.
10. Sliwoski G, Kothiwale S, Meiler J, Lowe EW Jr. Computational methods in drug discovery. Pharmacol Rev. 2014;66(1):334-395.
11. Mouchlis VD, Melagraki G, Zacharia LC, Afantitis A. Computer-aided drug design of β-secretase, γ-secretase and anti-tau inhibitors for the discovery of novel Alzheimer's therapeutics. Int J Mol Sci. 2020;21(3):703.
12. Masiello P, Broca C, Gross R, et al. Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes. 1998;47(2):224-229.
13. Szkudelski T. Streptozotocin-nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Exp Biol Med. 2012;237(5):481-490.
14. Song ES, Juliano MA, Juliano L, Hersh LB. Substrate activation of insulin-degrading enzyme (insulysin). A potential target for drug development. J Biol Chem. 2003;278(49):49789-49794.
15. Im H, Manolopoulou M, Malito E, et al. Structure of substrate-free human insulin-degrading enzyme (IDE) and biophysical analysis of ATP-induced conformational switch. J Biol Chem. 2007;282(35):25453-25463.
16. Shen Y, Joachimiak A, Rosner MR, Tang WJ. Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism. Nature. 2006;443(7113):870-874.
17. Fernandez-Gacio A, Ugarte M, Espinosa JF. Insulin degrading enzyme: structure-function relationship and its possible roles in health and disease. Curr Pharm Des. 2003;9(4):321-334.
18. Duckworth WC, Hamel FG, Peavy DE. Hepatic metabolism of insulin. Am J Med. 1988;85(5A):71-76.
19. Groves JT, Song Y. Enzymatic catalysis. Models for insulin degrading enzyme and the insulin-degrading enzyme mechanism. J Biol Inorg Chem. 2007;12(7):1015-1025.
20. Zhao L, Teter B, Morihara T, et al. Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade: implications for Alzheimer's disease intervention. J Neurosci. 2004;24(49):11120-11126.
21. Camberos MC, Pérez AA, Udrisar DP, et al. ATP inhibits insulin-degrading enzyme activity. Exp Biol Med. 2001;226(4):334-341.
22. Kurochkin IV. Insulin-degrading enzyme: embarking on amyloid destruction. Trends Biochem Sci. 2001;26(7):421-425.
23. Mukherjee A, Song E, Kihiko-Ehmann M, et al. Insulin degrading enzyme is negatively regulated by protein kinase B/Akt. J Biol Chem. 2000;275(26):20282-20287.
24. Kuo WL, Montag AG, Rosner MR. Insulin-degrading enzyme is differentially expressed and developmentally regulated in various rat tissues. Endocrinology. 1993;132(2):604-611.
25. Fakhrai-Rad H, Nikoshkov A, Kamel A, et al. Insulin-degrading enzyme identified as a candidate diabetes susceptibility gene in GK rats. Hum Mol Genet. 2000;9(14):2149-2158.
26. Villa-Pérez P, Merino B, Fernández-Díaz CM, et al. Liver-specific ablation of insulin-degrading enzyme causes hepatic insulin resistance and glucose intolerance, without affecting insulin clearance in mice. Metabolism. 2018;88:1-11.
27. Pivovarova O, Höhn A, Grune T, et al. Insulin-degrading enzyme: new therapeutic target for type 2 diabetes? Diabetologia. 2016;59(9):1827-1834.
28. Neant-Fery M, Garcia-Ordonez RD, Logan TP, et al. A small-molecule inhibitor of insulin degrading enzyme enhances memory in APP/PS1 mice. Neuropsychopharmacology. 2008;33(13):3016-3026.
29. Karamohamed S, Latourelle JC, Racette BA, et al. LRRK2 G2019S penetrance in Arab-Berber patients from Tunisia: a case-control genetic study. Lancet Neurol. 2005;4(10):591-594.
30. Davies MJ, D'Alessio DA, Fradkin J, et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2018;41(12):2669-2701.
31. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577-1585.
32. Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet. 2017;389(10085):2239-2251.
33. Turner RC, Cull CA, Frighi V, Holman RR. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). JAMA. 1999;281(21):2005-2012.
34. Kahn SE, Haffner SM, Heise MA, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med. 2006;355(23):2427-2443.
35. Cryer PE. Hypoglycemia, functional brain failure, and brain death. J Clin Invest. 2007;117(4):868-870.
36. Ahlqvist E, Storm P, Käräjämäki A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6(5):361-369.
37. DeFronzo RA. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58(4):773-795.
38. Duckworth WC, Bennett RG, Hamel FG. Insulin acts intracellularly on proteasomes through insulin-degrading enzyme. Biochem Biophys Res Commun. 2001;289(5):1151-1154.
39. Huang K, Fingar DC. Growing knowledge of the mTOR signaling network. Semin Cell Dev Biol. 2014;36:79-90.
40. Abdul-Hay SO, Kang D, McBride M, et al. Deletion of insulin-degrading enzyme elicits antipodal, age-dependent effects on glucose and insulin tolerance. PLoS One. 2011;6(6):e20818.
41. Shen Y, Joachimiak A, Rosner MR, Tang WJ. Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism. Nature. 2006;443(7113):870-874.
42. Maianti JP, McFedries A, Foda ZH, et al. Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones. Nature. 2014;511(7507):94-98.
43. Durham TB, Toth JL, Klimkowski VJ, et al. Dual exosite-binding inhibitors of insulin-degrading enzyme challenge its role as the primary mediator of insulin clearance in vivo. J Biol Chem. 2015;290(33):20044-20059.
44. Liang R, Tan C, Zhang P, et al. Design, synthesis and biological evaluation of benzothiazole derivatives as potent insulin-degrading enzyme inhibitors. Bioorg Med Chem Lett. 2016;26(17):4323-4328.
45. Zhang Y, Liang R, Chen L, et al. Discovery of novel insulin-degrading enzyme inhibitors by virtual screening and biological assays. Bioorg Med Chem Lett. 2017;27(18):44446-4450.
46. Manolopoulou M, Guo Q, Malito E, et al. Molecular basis of catalytic chamber-assisted unfolding and cleavage of human insulin by human insulin-degrading enzyme. J Biol Chem. 2009;284(21):14177-14188.
47. Perricone U, Wieder M, Seidel T, et al. A molecular dynamics-shared pharmacophore approach for the identification of novel inhibitors of the insulin-degrading enzyme. J Chem Inf Model. 2017;57(11):2842-2856.
48. Zhang Z, Liang WG, Bailey LJ, et al. Ensemble cryoEM elucidates the mechanism of insulin capture and degradation by human insulin degrading enzyme. eLife. 2018;7:e33572.
49. Cosconati S, Forli S, Perryman AL, et al. Virtual screening with AutoDock: theory and practice. Expert Opin Drug Discov. 2010;5(6):597-607.
50. Joshi R, Passner JM, Rohs R, et al. Functional specificity of a Hox protein mediated by the recognition of minor groove structure. Cell. 2007;131(3):530-543.
51. Sharma SK, Chorell E, Steneberg P, et al. Insulin-degrading enzyme prevents α-synuclein fibril formation in a nonproteolytical manner. Sci Rep. 2015;5:12531.
52. Hollingsworth SA, Dror RO. Molecular dynamics simulation for all. Neuron. 2018;99(6):1129-1143.
53. Liang WG, Ren M, Zhao F, Tang WJ. Structures of human insulin-degrading enzyme in complex with amylin provide insights into amylin processing and degradation. Proc Natl Acad Sci USA. 2018;115(38):E8817-E8825.
54. Song ES, Juliano MA, Juliano L, Hersh LB. Substrate activation of insulin-degrading enzyme (insulysin). A potential target for drug development. J Biol Chem. 2003;278(49):49789-49794.
55. Yang Y, Shen Y, Liu H, Hao Q. Molecular dynamics simulation and free energy calculation studies of the binding mechanism of allosteric inhibitors with p53-MDM2 interaction. J Chem Inf Model. 2011;51(12):3235-3246.
56. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35(Web Server issue):W407-W410.
57. Loving K, Alberts I, Sherman W. Computational approaches for fragment-based and de novo design. Curr Top Med Chem. 2010;10(1):14-32.
58. Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and structure-based drug design strategies. Molecules. 2015;20(7):13384-13421.
59. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717.
60. Pires DE, Blundell TL, Ascher DB. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 2015;58(9):4066-4072.
61. Gheibi S, Jeddi S, Carlsson A, et al. Effects of long-term treatment with curcumin on memory deficits and oxidative stress in streptozotocin-nicotinamide-induced diabetic rats. Behav Brain Res. 2019;359:7-15.
62. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50(6):537-546.
63. Tahara A, Matsuyama-Yokono R, Shibasaki M. Effects of antidiabetic drugs in high-fat diet and streptozotocin-nicotinamide-induced type 2 diabetic mice. Eur J Pharmacol. 2011;655(1-3):108-116.
64. Furman BL. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol. 2015;70:5.47.1-5.47.20.
65. Ghasemi A, Khalifi S, Jedi S. Streptozotocin-nicotinamide-induced rat model of type 2 diabetes (review). Acta Physiol Hung. 2014;101(4):408-420.
66. Novelli M, Fierabracci V, Vistoli G, et al. The thiol, S-allylcysteine, causes diabetes prevention in streptozotocin-treated mice and improvement of glucose metabolism in type 2 diabetic Goto-Kakizaki rats. Free Radic Biol Med. 2008;44(5):824-833.
67. Junod A, Lambert AE, Stauffacher W, Renold AE. Diabetogenic action of streptozotocin: relationship of dose to metabolic response. J Clin Invest. 1969;48(11):2129-2139.
68. Rakieten N, Rakieten ML, Nadkarni MV. Studies on the diabetogenic action of streptozotocin (NSC-37917). Cancer Chemother Rep. 1963;29:91-98.
69. Szkudelski T. Streptozotocin-nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Exp Biol Med. 2012;237(5):481-490.
70. Akbarzadeh A, Norouzian D, Mehrabi MR, et al. Induction of diabetes by streptozotocin in rats. Indian J Clin Biochem. 2007;22(2):60-64.
71. Goyal SN, Reddy NM, Patil KR, et al. Challenges and issues with streptozotocin-induced diabetes - A clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem Biol Interact. 2016;244:49-63.
72. Etuk EU. Animals models for studying diabetes mellitus. Agric Biol J N Am. 2010;1(2):130-134.
73. Reed MJ, Meszaros K, Entes LJ, et al. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism. 2000;49(11):1390-1394.
74. Srinivasan K, Viswanad B, Asrat L, et al. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res. 2005;52(4):313-320.
75. Zhang M, Lv XY, Li J, et al. The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Exp Diabetes Res. 2008;2008:704045.
76. Eleazu CO, Eleazu KC, Chukwuma S, Essien UN. Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. J Diabetes Metab Disord. 2013;12(1):60.
77. Wilson GL, Leiter EH. Streptozotocin interactions with pancreatic beta cells and the induction of insulin-dependent diabetes. Curr Top Microbiol Immunol. 1990;156:27-54.
78. Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 2008;51(2):216-226.
79. Yin J, Zhang H, Ye J. Traditional Chinese medicine in treatment of metabolic syndrome. Endocr Metab Immune Disord Drug Targets. 2008;8(2):99-111.
80. Szkudelski T. Streptozotocin-nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Exp Biol Med. 2012;237(5):481-490.
81. Maianti JP, McFedries A, Foda ZH, et al. Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones. Nature. 2014;511(7507):94-98.
82. Durham TB, Toth JL, Klimkowski VJ, et al. Dual exosite-binding inhibitors of insulin-degrading enzyme challenge its role as the primary mediator of insulin clearance in vivo. J Biol Chem. 2015;290(33):20044-20059.
83. Liang R, Tan C, Zhang P, et al. Design, synthesis and biological evaluation of benzothiazole derivatives as potent insulin-degrading enzyme inhibitors. Bioorg Med Chem Lett. 2016;26(17):4323-4328.
84. Zhang Y, Liang R, Chen L, et al. Discovery of novel insulin-degrading enzyme inhibitors by virtual screening and biological assays. Bioorg Med Chem Lett. 2017;27(18):4446-4450.
85. Cabrera O, Berman DM, Kenyon NS, et al. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci USA. 2006;103(7):2334-2339.
86. Bonner-Weir S, Deery D, Leahy JL, Weir GC. Compensatory growth of pancreatic β-cells in adult rats after short-term glucose infusion. Diabetes. 1989;38(1):49-53.
87. Standl E, Theodorakis MJ, Erbach M, et al. On the potential of acarbose to reduce cardiovascular disease. Cardiovasc Diabetol. 2014;13:81.
88. Riserus U, Willett WC, Hu FB. Dietary fats and prevention of type 2 diabetes. Prog Lipid Res. 2009;48(1):44-51.
89. Johansen JS, Harris AK, Rychly DJ, Ergul A. Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc Diabetol. 2005;4:5.
90. Eldor R, Yeffet A, Baum K, et al. Conditional and specific NF-κB blockade protects pancreatic beta cells from diabetogenic agents. Proc Natl Acad Sci USA. 2006;103(13):5072-5077.
91. Reed MJ, Meszaros K, Entes LJ, et al. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism. 2000;49(11):1390-1394.
92. Bolten CW, Blanner PM, McDonald WG, et al. Insulin sensitizing pharmacology of thiazolidinediones correlates with mitochondrial gene expression rather than activation of PPARγ. Gene Expr. 2007;13(6):357-376.
93. Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4(11):682-690.
94. Paul SM, Mytelka DS, Dunwiddie CT, et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Discov. 2010;9(3):203-214.
95. Ripphausen P, Nisius B, Peltason L, Bajorath J. Quo vadis, virtual screening? A comprehensive survey of prospective applications. J Med Chem. 2010;53(24):8461-8467.
96. Ekins S, Mestres J, Testa B. In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br J Pharmacol. 2007;152(1):9-20.
97. Schubert CR, Carmack E, Qian Y, et al. Population pharmacokinetic and pharmacodynamic modeling of insulin glulisine in children and adolescents with type 1 diabetes mellitus. J Clin Pharmacol. 2011;51(9):1353-1364.
98. Neant-Fery M, Garcia-Ordonez RD, Logan TP, et al. A small-molecule inhibitor of insulin degrading enzyme enhances memory in APP/PS1 mice. Neuropsychopharmacology. 2008;33(13):3016-3026.
99. DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ. 2016;47:20-33.
100. Waring MJ, Arrowsmith J, Leach AR, et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov. 2015;14(7):475-486.
101. Chen H, Engkvist O, Wang Y, et al. The rise of deep learning in drug discovery. Drug Discov Today. 2018;23(6):1241-1250.
102. Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3(8):711-715.
103. DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ. 2003;22(2):151-185.
104. Friedman LM, Furberg C, DeMets DL, et al. Fundamentals of Clinical Trials. 5th ed. Springer; 2015.
105. Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393-403.Grand View Research. Diabetes Therapeutics Market Size, Share & Trends Analysis Report. 2024. Available-from: https://www.grandviewresearch.com/industry-analysis/diabetes-care-devices-market
106. Iqbal Z, Rehman A, Ali A, et al. Diabetes mellitus: classification, mediators and complications; a gate way to identify potential targets for the development of new effective treatments. Biomed Pharmacother. 2019;114:108803.
107. Pearson ER, Flechtner I, Njølstad PR, et al. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N Engl J Med. 2006;355(5):467-477.
108. Wheeler E, Barroso I. Genome-wide association studies and type 2 diabetes. Brief Funct Genomics. 2011;10(2):52-60.
109. Rosenstock J, Kahn SE, Johansen OE, et al. Effect of linagliptin vs glimepiride on major adverse cardiovascular outcomes in patients with type 2 diabetes: the CAROLINA randomized clinical trial. JAMA. 2019;322(12):1155-1166.
110. Abdul-Ghani MA, Puckett C, Triplitt C, et al. Initial combination therapy with metformin, pioglitazone and exenatide is more effective than sequential add-on therapy in subjects with new-onset diabetes. Results from the efficacy and durability of initial combination therapy for type 2 diabetes (EDICT): a randomized trial. Diabetes Obes Metab. 2015;17(3):268-275.
111. Veiseh O, Tang BC, Whitehead KA, et al. Managing diabetes with nanomedicine: challenges and opportunities. Nat Rev Drug Discov. 2015;14(1):45-57.
112. Tran S, DeGiovanni PJ, Piel B, Rai P. Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med. 2017;6(1):44.