THE DYNAMIC DUO OF UNRAVELING & HEALING PROPERTIES OF TURMERIC AND POWER TEA: A REVIEW

Main Article Content

Pradeep Chunara
Ms.Vaidehi Gurjar
Dr.Pragnesh Patani

Keywords

Curcuminoids, Demethoxycurcumin, Bisdemethoxycurcumin, Polyphenols, Terpenes, Flavonoids, Wound healing

Abstract

This review delves into the comprehensive healing properties of turmeric and green tea, two natural substances renowned for their extensive use in traditional medicine and culinary practices. Turmeric, scientifically known as Curcuma longa L., has a rich history spanning centuries, revered for its multifaceted benefits in treating ailments ranging from inflammation-related conditions to microbial infections and diabetes. Its bioactive compounds, notably curcuminoids and essential oils, display potent anti-inflammatory, antioxidant, antimicrobial, and wound-healing properties. Additionally, turmeric exhibits substantial potential as a remedy for diabetes owing to its ability to lower blood sugar levels and enhance insulin action.


On the other hand, green tea, derived from Camellia sinensis leaves, offers a wealth of healing attributes, primarily attributed to its polyphenolic composition, including catechins like (-)-epigallocatechin-3-gallate (EGCG). EGCG stands out for its pronounced anti- inflammatory, anti-carcinogenic, and antioxidant effects, making it a prominent element in the therapeutic arsenal of green tea. The intricate mechanisms involving growth factors, gene families such as transglutaminases (TGMs), and the application of compounds like chitosan green tea polyphenols (CGP) complex contribute to the understanding of wound healing processes and the potential therapeutic benefits of green tea derivatives.


Exploring the synergistic effects and complementary attributes of turmeric and green tea compounds unveils a promising landscape in holistic health. Their diverse biological effects, unraveled through scientific investigations, underscore the immense potential of natural remedies in addressing various health concerns. This synthesis of knowledge highlights the intricate pathways and mechanisms that underpin the healing properties of these natural substances, emphasizing their role in fostering well-being and advocating for further exploration in modern medicine and health interventions

Abstract 94 | pdf Downloads 34

References

1. Osorio-Tobón JF, Carvalho PI, Barbero GF, Nogueira GC, Rostagno MA, de Almeida Meireles MA (2016) Fast analysis of curcuminoids from turmeric (Curcuma longa L.) by high-performance liquid chromatography using a fused-core column. Food Chem 200:167– 174.
2. Lucas J, Ralaivao M, Estevinho BN, Rocha F (2020) A new approach for the microencapsulation of curcumin by a spray drying method, in order to value food products. Powder Technol 362:428–435.
3. Akter J, Hossain MA, Takara K, Islam MZ, Hou D-X (2019) Antioxidant activity of different species and varieties of turmeric (Curcuma spp): isolation of active compounds. Comp Biochem Physiol C Toxicol Pharmacol 215:9–17.
4. Kumar A, Luxmi V (2020) Effect of calcinations on structural, optical and photocatalytic properties of a green photo-catalyst ‘turmeric roots powder’. Optik 216:164804.
5. Chaaban A, Gomes EN, Richardi VS, Martins CEN, Brum JS, Navarro-Silva MA, Deschampsd C, Molentoag MB (2019) Essential oil from Curcuma longa leaves: can an overlooked by-product from turmeric industry be effective for myiasis control? Ind Crop Prod 132:352–364.
6. Mishra R, Gupta AK, Kumar A, Lal RK, Saikia D, Chanotiya CS (2018) Genetic diversity, essential oil composition, and in vitro antioxidant and antimicrobial activity of Curcuma longa L. germplasm collections. J Appl Res Med Aromat Plants 10:75–84.
7. Ilangovan M, Guna V, Hu C, Nagananda G, Reddy N (2018) Curcuma longa L. plant residue as a source for natural cellulose fibers with antimicrobial activity. Ind Crop Prod 112:556–560.
8. Deepa KM: The Golden Spice. Market Survey, Facts for You; 2007; 51: 45-46.
9. Kapoor LD. Handbook of Ayurvedic medicinal plants. Boca Raton, FL: CRC Press, 1990.
10. Govindarajan VS. Turmeric-chemistry, technology, and quality. Crit Rev Food Sci Nutr 1980;12:199-301.
11. Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Pauli GF, et al. The essential medicinal chemistry of curcumin. J Med Chem 2017;60:1620-37.
12. Verma MK, Najar IA, Tikoo MK, Singh G, Gupta DK, Anand R, et al. Development of a validated UPLCTOF-MS method for the determination of curcuminoids and their pharmacokinetic study in mice. Daru 2013;21:11.
13. Kapoor LD. Handbook of Ayurvedic Medicinal Plants. Boca Raton, Florida: CRC Press; 1990. p. 185.
14. Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Curcumin-phospholipid complex: Preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm 2007;330:155-63.
15. Priyadarsini KI. The chemistry of curcumin: From extraction to therapeutic agent. Molecules 2014;19:20091-112.
16. Vavilova NI. Turmeric a new spice and medicinal plant. Skogo Inst Rastenievodstva Im 1990;4:77-9.
17. Chatzinasiou, L.; Booker, A.; MacLennan, E.; Mackonochie, M.; Heinrich, M. Turmeric (Curcuma longa L.) products: What quality differences exist? J. Herb. Med. 2019, 17-18, 100281.
18. Amalraj, A.; Pius, A.; Gopi, S.; Gopi, S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives A review. J. Tradit. Complement. Med. 2016, 7, 205–233.
19. Czernicka, L.; Grzegorczyk, A.; Marzec, Z.; Antosiewicz, B.; Malm, A.; Kukula-Koch,
W. Antimicrobial Potential of Single Metabolites of Curcuma longa Assessed in the Total Extract by Thin-Layer Chromatography-Based Bioautography and Image Analysis. Int. J. Mol. Sci. 2019, 20, 898.
20. Irshad, S.; Muazzam, A.; Shahid, Z.; Dalrymple, M.B. Curcuma longa (Turmeric): An auspicious spice for antibacterial, phytochemical and antioxidant activities. Pak. J. Pharm. Sci. 2018, 31, 2689–2696.
21. Choi, Y.; Ban, I.; Lee, H.; Baik, M.-Y.; Kim, W. Puffing as a Novel Process to Enhance the Antioxidant and Anti-Inflammatory Properties of Curcuma longa L. (Turmeric). Antioxidants 2019, 8, 506.
22. Rodríguez Castaño, P.; Parween, S.; Pandey, A.V. Bioactivity of curcumin on the cytochrome p450 enzymes of the steroido-genic pathway. Int. J. Mol. Sci. 2019, 20, 4606.
23. Toden, S.; Theiss, A.; Wang, X.; Goel, A. Essential turmeric oils enhance anti- inflammatory efficacy of curcumin in dextran sulfate sodium-induced colitis. Sci. Rep. 2017, 7, 1–12.
24. Yu, Y.; Shen, Q.; Lai, Y.; Park, S.Y.; Ou, X.; Lin, D.; Jin, M.; Zhang, W. Anti- inflammatory Effects of Curcumin in Microglial Cells. Front. Pharmacol. 2018, 9, 386.
25. Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of Curcumin: Problems and Promises. Mol. Pharm. 2007, 4, 807–818.
26. Chen, Y.; Lu, Y.; Lee, R.J.; Xiang, G. Nano Encapsulated Curcumin: And Its Potential for Biomedical Applications. Int. J. Nanomed. 2020, ume 15, 3099–3120.
27. Agarwal, D.K.; Agarwal, S. Current Trends in Drug Delivery System of Curcumin and its Therapeutic Applications. Mini Rev. Med. Chem. 2020, 20, 1190–1232.
28. Kim, J.H.; Gupta, S.C.; Park, B.; Yadav, V.R.; Aggarwal, B.B. Turmeric (curcuma longa) inhibits inflammatory nuclear fac-tor (nf)-κb and nf-κb-regulated gene products and induces death receptors leading to suppressed proliferation, induced chemosensitization, and suppressed osteoclastogenesis. Mol. Nutr. Food Res. 2012, 56, 454–465.
29. Rizeq, B.; Gupta, I.; Ilesanmi, J.; Alsafran, M.; Rahman, M.; Ouhtit, A. The Power of Phytochemicals Combination in Cancer Chemoprevention. J. Cancer 2020, 11, 4521– 4533.
30. Siviero, A.; Gallo, E.; Maggini, V.; Gori, L.; Mugelli, A.; Firenzuoli, F.; Vannacci, A. Curcumin, a golden spice with a low bio-availability. J. Herb. Med. 2015, 5, 57–70.
31. Araujo AC and Leon LL: Biological activities of Curcuma longs L. Mem. Inst. Oswaldo Cruz.; 2001; 96: 723-728
32. Kapoor LD: Handbook of Ayurvedic Medicinal Plants,CRC Press, Boca Raton, Florida; 1990; 2: 185-187.
33. Gujral ML, Chowdhury NK and Saxena PN: The effect of certain indigenous or remedies on the healing of wounds and ulcers. J.Indian State Med. Assoc.; 1953; 22: 273-276
34. Gopinath D, Ahmed MR, Gomathi K, Chithra K, Snehal PK and Jayakumar R: dermal wound healing processes with curcumin Incorporated collagen films. Biomaterials.; 2004; 25: 1911-1917.
35. Sidhu GS, Mani H, Gaddipati Jo, Singh AK, Seth P, Banaudha KK, Patnaik GK and Maheshwari SK: Curcumin enhance wound healing in streptozotocin induced diabetic rats, and genetically diabetic mice. Wound Repair Regen; 1999; 7: 362-374.
36. Surh YJ, Chun KS, Han HH, keum SS, Park YS, and Lee SS: molecular mechanism underlying chemopreventive activities of Anti-inflammatory phytochemicals: down regulation of COX-2 and iNOS through suppression of NF-kB activation. Mutat, Res.; 2001; 48: 243-268.
37. Banerjee A and Nigam SS: Antimicrobial efficacy of the essential oil of curcuma longa. Indian J.Med. Res.; 1978; 68: 864-866.
38. Kumar S,Narain U, Tripathi S and Misra K: Synthesis of curcumin bioconjugates and study of their antibacterials activities against beta-lactamase- producing micro organisms. Bioconjug. Chem.; 2001; 12: 464-469.
39. Jayaprakash a GK, Negi PS, Anandharamakrishnan C and Sakariah KK: Chemical composition of turmeric oil-a-by-product from turmeric oloeresin industry and it’s inhibitory activity against different fungi. Z. Naturforsch.; 2001; 56:40-44.
40. Biswas SK, McClure D, Jimenez LA, Megson IL and Rahman I:Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin- 8 release in alveolar Epithelial cells:mechanism of free radicalscavenging activity.Antioxidant Redox Signal; 2005; 7: 32-41.
41. Arun N and Nalini N: Efficacy of turmeric on blood sugar and polyol pathway in diabetic albino rats. Plant Food Hum. Nutrition; 2002; 57: 41-52.
42. Sajithal GB, Chittar P and Chandrakasan G: Effect of Curcumin on the advanced glycation and cross linking of collagen in diabetic rats. Biochem. Pharmacol; 1998; 56: 1607-1614.
43. C.David.;K.Alekhya.;L.Saujanya.;Garima.;Raunaque Saba , Turmeric,Curcumin and Our Life : A Review. Jaggi Lal .2012 fig.2.
44. Yamamoto, T.Kim, M.Juneja, L R. Chemistry and Applications Of Green Tea. 1997 CRC Press pg-4.
45. Xuejun Pan, Guoguang Niu, Huizhou Liu. Chemical engineering and processing: Process Intensification. Vol.42., Issue 2., 2003., pg-129-133.
46. Rena Farhoosh, Ghulam A.Golmovahhed, Mohammad H.H. Khodaparast., antioxidant activities of various extracts of old tea, leaves and black tea wastes(Camellia Sinensis L.)., 2007., pg- 231-236.
47. Wang H., Provan G., Helliwell K., phytochemicals functional foods., 2003, pg-128-159.
48. Me going Shuai., Chuanyi Peng., Huiliang Niu., Dongliang Shao., Ruyan Hou., Huimei Cai., Volume 374, 2022.
49. Antonio Moreda-Pineiroa, Andrew Fisherb, Steve J. Hill., Journal of Food Composition and Analysis 16 (2003) 195–211.
50. Zhang J, Yang R, Chen R, Li YC, Peng Y, Liu C (2018) Multi-elemental analysis associated with chemometric techniques for geographical origin discrimination of tea leaves (Camellia sinensis) in Guizhou Province, SW China. Molecules 23(11): 3013.
51. Jian Zhang & Ruidong Yang & Yuncong C. Li & Xinran Ni., The Role of Soil Mineral Multi-elements in Improving the Geographical Origin Discrimination of Tea (Camellia sinensis)., 2021., pg-4332.
52. Balentine DA . Introduction: tea and health. Crit. Rev. Food Sci. Nutr., 1997., 8: 691-669.
53. Hara Y, Luo SJ, Wickremashinghe RL, Yamanishi T., VI. Biochemistry of processing black tea. Food Rev. Int., 1995(d)., 11: pg- 457-471.
54. Mukhtar H, Ahmad N., Tea Polyphenols: prevention of cancer and optimizing health. Am. J. Clin. Nutr., 71 (suppl)., 2000., pg- 1698S-1702S.
55. Hara Y, Luo SJ, Wickremashinghe RL, Yamanishi T. Botany (of tea). Food Rev. Int., 11: 1995(a) pg- 371-374.
56. Liang Y, Lu J, Zhang L, Wu S, Wu Y., Estimation of black tea quality by analysis of chemical composition and colour difference of tea infusions Food Chem., 2003., 80: 283-290.
57. Venkata Sai Prakash Chaturvedula and Indra Prakash., The aroma, test, colour and buy active constituents of tea., 2011., pg- 2113.
58. Hara Y, Luo SJ, Wickremashinghe RL, Yamanishi T., Botany (of tea). Food Rev. Int., 1995(a) 11: pg- 371-374.
59. Balentine DA., Introduction: tea and health. Crit. Rev. Food Sci. Nutr., 1997., 8: pg- 691-669.
60. Hara Y, Luo SJ, Wickremashinghe RL, Yamanishi T., VI.Biochemistry of processing black tea. Food Rev. Int., 1995(d) 11: pg- 457-471.
61. Clark RA: Regulation of fibroplasia in cutaneous wound repair. Am J Med Sci 1993;306:42–48.
62. Gibran NS, Isik FF, Hembach DM, Gordan D: Basic fibroblast growth factor in the early human burn wound. J Surg Res 1994;56:226–234.
63. Kibe Y, Takenaka H, Kishimoto S: Spatial and temporal ex- pression of basic fibroblast growth factor protein during wound healing of rat skin. Br J Dermatol 2000;143:720–727.
64. Tsou R, Fathkr C, Wilson L, Wallace K, Gibran N, Isik F: Retroviral delivery of dominant-negative vascular endothelial growth factor receptor type 2 to murine wounds inhibits wound angiogenesis. Wound Repair Regen 2002;10:222–229.
65. Balasubramanian S, Efimova T, Eckert RL: Green tea polyphenol stimulate a Ras, MEKK1, MEK3 and p38 cascade to increase ac- tiveator protein1 factor-dependent involucrin gene expression in normal human keratinocytes. J Biol Chem 2002;277:1828– 1836.
66. Cabrera C, Artacho R, Gimenez R: Beneficial effects of green tea: a review. J Am Coll Nutr 2006;25:79–99.
67. Gibran NS, Isik FF, Hembach DM, Gordan D: Basic fibroblast growth factor in the early human burn wound. J Surg Res 1994;56:226–234.
68. Kibe Y, Takenaka H, Kishimoto S: Spatial and temporal ex- pression of basic fibroblast growth factor protein during wound healing of rat skin. Br J Dermatol 2000;143:720–727.
69. Sabine W, Richard G: Regulation of wound healing 486 by growth factors and cytokines. Physiol Rev 2003;83:835–870.
70. Santosh K Katiyar., Skin photoprotection by green tea: antioxidant and immunomodulatory effects., 2003., pg-234-234.