BIOCHEMICAL EVALUATION OF PROINFLAMMATORY MARKER UPREGULATION AND ITS ROLE IN THE PATHOGENESIS AND DIAGNOSTIC BIOMARKERS OF RHEUMATOID ARTHRITIS
Main Article Content
Keywords
Rheumatoid Arthritis, Proinflammatory Markers, Oxidative Stress, Antioxidants, Diagnostic Biomarkers.
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease primarily affecting joints, leading to significant inflammation, joint destruction, and functional impairment. The pathogenesis of RA is characterized by immune system dysregulation, causing an overproduction of proinflammatory cytokines, chemokines, and reactive oxygen species (ROS), which contribute to tissue damage. This study aims to evaluate the biochemical changes, specifically the upregulation of proinflammatory markers, and their role in the disease's pathogenesis and diagnostic biomarkers. The study included 50 patients with RA and 50 healthy controls, all recruited from the Department of Orthopedics at Allama Iqbal Medical College in Lahore, Pakistan. Biochemical analysis was conducted to evaluate various oxidative and inflammatory markers, including malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), catalase, nitric oxide (NO), and antioxidant vitamins (C, E, and A). The results revealed significantly elevated levels of MDA (5.47±1.22 in RA patients vs. 0.86±0.0392 in controls, p=0.014), NO (32.16±6.58 in RA vs. 17.85±3.58 in controls, p=0.001), and a significant decrease in key antioxidants: SOD (0.112±0.0018 in RA vs. 1.034±0.056 in controls, p=0.025), GSH (4.43±1.28 in RA vs. 7.26±1.99 in controls, p=0.011), catalase (3.47±1.088 in RA vs. 5.23±1.45 in controls, p=0.004), and vitamins C (1.28±0.956 in RA vs. 3.48±0.956 in controls, p=0.018), E (6.35±1.44 in RA vs. 10.49±4.29 in controls, p=0.031), and A (254.98±21.58 in RA vs. 452.35±19.65 in controls, p=0.016). These findings underscore the critical role of oxidative stress and proinflammatory cytokines in RA’s progression. The results suggest that assessing these biomarkers could offer valuable insights for early detection, monitoring disease progression, and developing more effective treatments for RA.
References
2. Battancs, E. (2021). Research on the synergism of smoking and periodontal disease in patients with rheumatoid arthritis and diabetes Szegedi Tudomanyegyetem (Hungary)].
3. Bilski, R., & Nuszkiewicz, J. (2025). Antioxidant Therapies as Emerging Adjuncts in Rheumatoid Arthritis: Targeting Oxidative Stress to Enhance Treatment Outcomes. International journal of molecular sciences, 26(7), 2873.
4. Butola, L. K., Anjanker, A., Vagga, A., & Kaple, M. N. (2020). Endogenous factor and pathophysiology of rheumatoid arthritis: an autoimmune disease from decades. Int J Cur Res Rev, 12(22), 34-40.
5. Ding, Q., Hu, W., Wang, R., Yang, Q., Zhu, M., Li, M., Cai, J., Rose, P., Mao, J., & Zhu, Y. Z. (2023). Signaling pathways in rheumatoid arthritis: implications for targeted therapy. Signal transduction and targeted therapy, 8(1), 68.
6. Ingegnoli, F., Cavalli, S., Giudice, L., & Caporali, R. (2022). Caffeine and rheumatoid arthritis: A complicated relationship. Autoimmunity Reviews, 21(7), 103117.
7. Islam, M. T., Sarkar, C., Hossain, R., Bhuia, M. S., Mardare, I., Kulbayeva, M., Ydyrys, A., Calina, D., Habtemariam, S., & Kieliszek, M. (2023). Therapeutic strategies for rheumatic diseases and disorders: targeting redox imbalance and oxidative stress. Biomedicine & Pharmacotherapy, 164, 114900.
8. Jahid, M., Khan, K. U., & Ahmed, R. S. (2023). Overview of rheumatoid arthritis and scientific understanding of the disease. Mediterranean Journal of Rheumatology, 34(3), 284-291.
9. Kondo, N., Kanai, T., & Okada, M. (2023). Rheumatoid arthritis and reactive oxygen species: a review. Current Issues in Molecular Biology, 45(4), 3000-3015.
10. Kumar, V., Prakash, J., Gupta, V., & Khan, M. (2016). Antioxidant enzymes in rheumatoid arthritis. J Arthritis, 5(206), 2.
11. Ling, H., Li, M., Yang, C., Sun, S., Zhang, W., Zhao, L., Xu, N., Zhang, J., Shen, Y., & Zhang, X. (2022). Glycine increased ferroptosis via SAM-mediated GPX4 promoter methylation in rheumatoid arthritis. Rheumatology, 61(11), 4521-4534.
12. Maiuolo, J., Muscoli, C., Gliozzi, M., Musolino, V., Carresi, C., Paone, S., Ilari, S., Mollace, R., Palma, E., & Mollace, V. (2021). Endothelial dysfunction and extra-articular neurological manifestations in rheumatoid arthritis. Biomolecules, 11(1), 81.
13. Ponist, S., Zloh, M., & Bauerova, K. (2019). Impact of oxidative stress on inflammation in rheumatoid and adjuvant arthritis: Damage to lipids, proteins, and enzymatic antioxidant defense in plasma and different tissues. In Animal models in medicine and biology. IntechOpen.
14. Pourhabibi‐Zarandi, F., Rafraf, M., Zayeni, H., Asghari‐Jafarabadi, M., & Ebrahimi, A. A. (2024). The efficacy of curcumin supplementation on serum total antioxidant capacity, malondialdehyde, and disease activity in women with rheumatoid arthritis: A randomized, double‐blind, placebo‐controlled clinical trial. Phytotherapy Research, 38(7), 3552-3563.
15. Riaz, M., Rasool, G., Yousaf, R., Fatima, H., Munir, N., & Ejaz, H. (2025). Anti-Rheumatic potential of biological DMARDS and protagonistic role of bio-markers in early detection and management of rheumatoid arthritis. Innate immunity, 31, 17534259251324820.
16. Turrubiates-Hernández, F. J., Márquez-Sandoval, Y. F., González-Estevez, G., Reyes-Castillo, Z., & Muñoz-Valle, J. F. (2020). The relevance of selenium status in rheumatoid arthritis. Nutrients, 12(10), 3007.
17. Weyand, C. M., & Goronzy, J. J. (2021). The immunology of rheumatoid arthritis. Nature immunology, 22(1), 10-18.
18. Zamudio-Cuevas, Y., Martínez-Flores, K., Martínez-Nava, G. A., Clavijo-Cornejo, D., Fernández-Torres, J., & Sánchez-Sánchez, R. (2022). Rheumatoid arthritis and oxidative stress. Cellular and Molecular Biology, 68(6), 174-184.