TOPICAL GELS FOR DRUG DELIVERY: RECENT ADVANCEMENTS IN FORMULATION AND FUTURE DIRECTIONS IN CLINICAL PRACTICE

Main Article Content

Sadia Ahmed Zuberi
Fawaz Jaffar
Nousheen Alam
Samina Sheikh
Nimra Aamir
Hasnan Ali
Rahat Fatima Naqvi

Keywords

Classification, Gel applications, gel formulation, limitations, pharmaceutical gels.

Abstract

The main intention behind this review is to provide updated information related to the recent developments in terms of novel topical preparations including the basic concepts of dermal drug delivery systems. Topical drug delivery systems especially gels have several advantages such as it provides prolonged application to the site of action ultimately improving the therapeutic effect. A gel is a semisolid combination of a three-dimensional matrix of cross-linked materials. The three dimensional matrix of gel is mainly composed of a gelling agent and water. This review highlights the fundamentals of gel formulation and the factors affecting, along with the classification, advantages, limitations, and applications of different types of pharmaceutical gels such as niosomal/proniosomal gel, emulgels, bigels, xerogels and aerogels, organogels and hydrogels.

Abstract 150 | pdf Downloads 49

References

1. Agrawal, V., Gupta, V., Ramteke, S., Trivedi, P. (2010). Preparation and evaluation of tubular micelles of pluronic lecithin organogel for transdermal delivery of sumatriptan, AAPS PharmSciTech, 11:1718–1725.
2. Ahmed, T.A., Mussari, M.M., Omar, A.M., Khalid. M. (2020). In situ gelling formulation for reduced initial drug burst. Patent No. US10813882B1.
3. Akbari, J., Saeedi, M., Morteza-Semnani, K., Hashemi, S.M., Babaei, A., Eghbali, M., Mohammadi, M., Rostamkalaei, S.S., Asare-Addo, K., Nokhodchi, A. (2022). Innovative topical niosomal gel formulation containing diclofenac sodium (niofenac). J Drug Target, 30:108–117.
4. Akbarzadeh, I., Keramati, M., Azadi, A., Afzali, E., Shahbazi, R., Norouzian, D., Bakhshandeh, H. (2021). Optimization, physicochemical characterization, and antimicrobial activity of a novel simvastatin nano-niosomal gel against E. coli and S. aureus. Chem Phys Lipids, 234:105019.
5. Allan, S.H. (2012). Hydrogels for biomedical applications. Adv Drug Deliv Rev, 64:18–23.
6. Alnaief, M., Alzaitoun, M., Garcia Gonalez, C.A., Smirnova, I. (2011). Preparation of biodegradable nanoporous microspherical aerogel based on alginate. Carbohydr Polym. 2011;84:1011–1018.
7. Amin, S., Rajabnezhad, S., Kohli, K. (2009). Hydrogels as potential drug delivery systems. Sci Res Essay, 30:1175–1183.
8. Andonova, V., Peneva, P., Georgiev, G.S., Toncheva, V.T., Apostolova, E., Peychev, Z., Dimitrova, S., Katsarova, M., Petrova, N., Kassarova, M. (2017). Ketoprofen-loaded polymer carriers in bigel formulation: An approach to enhancing drug photostability in topical application forms. Int J Nanomedicine, 12:6221–6238.
9. Attwood, D. (2002). Disperse systems. In: Aulton ME, Ed., Pharmaceutics-The Science of Dosage Form Design”. London: Churchill Livingstone, UK, pp. 83–91, 528–529.
10. Balakrishnan, B., Jayakrishnan, A. (2015). Injectable hydrogels for biomedical applications. In: Nair LS, Ed., Injectable Hydrogels for Regenerative Engineering, 2nd ed., pp. 33–96.
11. Bhatia, R.B., Brinker, C.J., Gupta, A.K., Singh, A.K. (2000). Aqueous sol−gel process for protein encapsulation. Chem Mater, 12:2434–2441.
12. Biswal, S., Murthy, P., Sahu, J., Sahoo, P., Amir, F. (2008). Vesicles of non ionic surfactants (niosomes) and drug delivery potential. Int J Pharm Sci Nanotech, 1:1–8.
13. Boday, D.J., Garcia, J.M., Hedrick, J.L., Wertz, J.T., Wojtecki, R.J. (2021). Silica-based organogels via hexahydrotriazine-based reactions. Patent No. US10975217B2.
14. Bodor, N.S., Koleng, J.J., Angulo, D. (2021) Formulation for soft anticholinergic analogs. Patent No. US11026919B2.
15. Bryson, E., Hartman, R., Arnold, J., Gorman, G., Sweitzer, S., Asbill, S. (2015). Skin permeation and antinociception of compounded topical cyclobenzaprine hydrochloride formulations. Int J Pharm Compd. 2015;19:161–166.
16. Campoccia, D., Doherty, P., Radice, M., Brun, P., Abatangelo, G., Williams, D.F. (1998). Semisynthetic resorbable materials from hyaluronan esterification. Biomater, 19:2101–2127.
17. Carter, S.J. (2000) Cooper and Gunn’s Tutorial Pharmacy, 6th ed., CBS Publishers and Distributors, New Delhi, India, pp. 68–72.
18. Charyulu, N.R., Joshi, P., Dubey, A., Shetty, A. (2021). Emulgel: A boon for enhanced topical drug delivery. J Young Pharm, 1:76.
19. Chellapa, P., Mohamed, A.T., Keleb, E.I., Elmahgoubi, A., Eid, A.M., Issa, Y.S., Elmarzugi, N.A. (2015) Nanoemulsion and nanoemulgel as a topical formulation. IOSR J Pharm, 5:43–47.
20. Cheng, Y., Lu, L., Zang, W., Shi, J., Cao, Y. (2012). Reinforce low density alginate based aerogels: preparation, hydrophobic modification and characterization. Carbohydr Polym, 88:1093–1099.
21. Choudhury, H., Gorain, B., Pandey, M., Chatterjee, L.A., Sengupta, P., Das, A., Molugulu, N., Kesharwani, P. (2017). Recent update on nanoemulgel as topical drug delivery system. J Pharm Sci, 106:1736–1751.
22. Co, E,D., Marangoni, A.G. (2018). Oleogels: An introduction. In: Edible oleogels, AOCS Press, Chaimpaign, IL, USA, pp. 1–29.
23. Cuggino, J.C., Blanco, E.R., Gugliotta, L.M., Igarzabal, C.I., Calderón, M. (2019). Crossing biological barriers with nanogels to improve drug delivery performance. J Controlled Release, 307:221–246.
24. Davies. L.C., Novais, J.M., Martins-Dias, S. (2004). Detoxification of olive mill wastewater using superabsorbent polymers. Environ Technol, 25:89–100.
25. DeFail, A.J., Chu, C.R., Izzo, N., Marra, K.G. (2006). Controlled release of bioactive TGF-β1 from microspheres embedded within biodegradable hydrogels, Biomater, 27:1579–1585.
26. Dhawas, V., Dhabarde, D., Patil, S. (2020). Emulgel: A comprehensive review for novel topical drug delivery system. Int J Recent Sci Res, 11:38134–38138.
27. Di Michele, L., Fiocco, D., Varrato, F., Sastry, S., Eiser, E., Foffi, G. (2014). Aggregation dynamics, structure, and mechanical properties of bigels. Soft Matter, 10:3633–3648.
28. El-Laithy, H.M., Shoukry, O., Mahran, L.G. (2011). Novel sugar esters proniosomes for transdermal delivery of vinpocetine: preclinicaland clinical studies. Eur J Pharm Biopharm, 77:43–55.
29. Esmaeely-Neisiany, R., Enayati, M.S., Sajkiewicz, P., Pahlevanneshan, Z., Ramakrishna, S. (2020). Insight into the current directions in functionalized nanocomposite hydrogels. Front Mater, 7:25.
30. Esposito, C.L., Kirilov, P., Roullin, V.G. (2018). Organogels, promising drug delivery systems: An update of state-of-the-art and recent applications. J Control Release, 271:1–20.
31. Esposito, E., Drechsler, M., Huang, N., Pavoni, G., Cortesi, R., Santonocito, D., Puglia, C. (2016). Ethosomes and organogels for cutaneous administration of crocin. Biomed Microdev, 18:1–12.
32. Esposito, E., Menegatti, E., Cortesi, R. (2013). Design and characterization of fenretinide containing organogels. Mater Sci Eng: C, 33:383–389.
33. Ferreira, S.A., Gama, F.M., Vilanova, M. (2013). Polymeric nanogels as vaccine delivery systems. Nanomed: Nanotechnol Biol Med, 9:159–173.
34. Flo, A., Calpena, A.C., Halbaut, L., Araya, E.I., Fernández, F., Clares, B. (2016). Melatonin delivery: transdermal and transbuccal evaluation in different vehicles. Pharm Res, 33:1615–1627.
35. Florence, A.T., Attwood, D. (2007). FASTtrack: Physical Pharmacy. Pharmaceutical Press, London, UK.
36. Ganesan, K., Budtova, T., Ratke, L., Gurikov, P., Baudron, V., Preibisch, I., Niemeyer, P., Smirnova, I., Milow, B. (2018). Review on the production of polysaccharide aerogel particles. Materials, 11:2144.
37. Gao, D., Xu, H., Philbert, M.A., Kopelman, R. (2008). Bioeliminable nanohydrogels for drug delivery. Nano Lett, 8:3320–3324.
38. Gonnet, M., Lethuaut, L., Boury, F. (2010). New trends in encapsulation of liposoluble vitamins. J Control Release, 146:276–290.
39. Goyal, S., Sharma, P., Ramchandani, U., Shrivastava, S.K., Dubey, P.K. (2011). Novel anti inflammatory topical gels. Int J Pharm Biol Arch, 2:1087–1094.
40. Guenther, U., Smirnova, I., Neubert, R.H.H. (2008). Hydrophilic Silica aerogels as dermal drug delivery systems- Dithranol as a model drug. Eur J Pharm Biopharm, 69:935–942.
41. Gupta, P.N., Mishra, V., Rawat, A., Dubey, P., Mahor, S., Jain, S., Chatterji, D.P., Vyas, S.P. (2005). Non-invasive vaccine delivery in transfersomes, niosomes and liposomes: a comparative study. Int J Pharm, 293:73–82.
42. Hajebi, S., Rabiee, N., Bagherzadeh, M., Ahmadi, S., Rabiee, M., Roghani-Mamaqani, H., Tahriri, M., Tayebi, L., Hamblin, M.R. (2019). Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater, 92:1–8.
43. Hamed, R., AbuRezeq, A.A., Tarawneh, O. (2018). Development of hydrogels, oleogels, and bigels as local drug delivery systems for periodontitis. Drug Dev Ind Pharm, 44:1488–1497.
44. Hamed, R., Mahmoud, N.N., Alnadi, S.H., Alkilani, A.Z., Hussein, G. (2020). Diclofenac diethylamine nanosystems-loaded bigels for topical delivery: Development, rheological characterization, and release studies. Drug Dev Ind Pharm, 46:1705–1715.
45. Harshitha, V., Swamy, M.V., Kumar, P., Rani, K.S., Trinath, A. (2020). Nanoemulgel: A process promising in drug delivery system. Res J Pharm Dosage Forms Technol. 2020;12:125–130.
46. Hill-West, J.L., Chowdhury, S.M., Slepian, M.J., Hubbell, J.A. (1994). Inhibition of thrombosis and intimal thickening by in situ photopolymerization of thin hydrogel barriers. Proc Natl Acad Sci, 91:5967–5971.
47. Huang, H. (2020). Hydrogel for cell culture and biomedical applications. Patent No. US10603406B2.
48. Ibrahim, A.A., Bosela, A.A., Ahmed, S.M., Mahrous, G.M. (2005). Proniosomes as a drug carrier for transdermal delivery of ketorolac. Eur J Pharm Biopharm, 59:485–490.
49. Ilomuanya, M.O., Hameedat, A.T., Akang, E.N., Ekama, S.O., Silva, B.O., Akanmu, A.S. (2020). Development and evaluation of mucoadhesive bigel containing tenofovir and maraviroc for HIV prophylaxis. Future J Pharm Sci, 6:1–2.
50. Jabbari-Gargari, A., Moghaddas, J., Hamishehkar, H., Jafarizadeh-Malmiri, H. (2021). Carboxylic acid decorated silica aerogel nanostructure as drug delivery carrier. Microporous Mesoporous Mater, 111220.
51. Jain, N., Verma, A. (2020). Preformulation studies of pilocarpine hydrochloride as niosomal gels for ocular drug delivery. Asian J Pharm Clin Res, 149–155.
52. Jain, N.K. (2006). Pharmaceutical Product Development. CBS Publishers & Distributors, New Delhi, India.
53. Jha, A., Simonton, T.C. (2019). Polyphenols/PEG based hydrogel system for a dental varnish. Patent No. US10500138B2.
54. Jhawat, V., Gupta, S., Saini, V. (2016). Formulation and evaluation of novel controlled release of topical pluronic lecithin organogel of mefenamic acid. Drug Deliv, 23:3573–3581.
55. Karg, M., Pich, A., Hellweg, T., Hoare, T., Lyon, L.A., Crassous, J.J., Suzuki, D., Gumerov, R.A., Schneider, S., Potemkin, I.I., Richtering, W. (2019). Nanogels and microgels: From model colloids to applications, recent developments, and future trends. Langmuir, 35:6231–6255.
56. Karp JM, Joshi N, Rioux D, Sherman NE, Pickering AJ, Gallin CF. Self-assembled gels formed with anti-retroviral drugs, prodrugs thereof, and pharmaceutical uses thereof. Patent No. US11020410B2, 2021.
57. Kashyap NK, Kumar N, Kumar MR. Hydrogels for pharmaceutical and biomedical applications. Crit Rev Ther Drug Carrier Syst. 2005;22:107–150.
58. Kasputis T, Skoumal M, Shea LD. Microporous hydrogel scaffolds for cell transplantation. Patent No. US10973956B2, 2021.
59. Khan S, Ullah A, Ullah K, Rehman NU. Insight into hydrogels. Des Monomers Polym. 2016;19:456–478.
60. Khandan, A., Jazayeri, H., Fahmy, M.D., Razavi, M. (2017). Hydrogels: Types, structure, properties, and applications. Biomat Tiss Eng, 4:143–169.
61. Koshani R, Tavakolian M, van de Ven TG. Natural emulgel from dialdehyde cellulose for lipophilic drug delivery. ACS Sustain Chem Eng. 2021;9:4487–4497.
62. Labarre, D., Ponchel, G., Vauthier, C. (2010). Biomedical and Pharmaceutical Polymers. Pharmaceutical Press, London, UK.
63. Larson, R.G. (1999). The Structure and Rheology of Complex Fluids, Oxford University Press, NY, USA.
64. Levkin, P., Li, L. (2020). Inherently photodegradable hydrogels or organogels for microfabrication. Patent No. EP3502779B1.
65. Liang, B., Zhang, M., Peng, H. 2021. In-situ gel forming ophthalmic formulations containing difluprednate. Patent No. WO2021034850A1.
66. Liu, H., Zhang, P., Liu, M., Wang, S., Jiang, L. (2013). Organogel‐based thin films for self‐cleaning on various surfaces. Adv Mat, 25:4477–4481.
67. Lovskaya, D., Menshutina, N. (2020). Alginate-based aerogel particles as drug delivery systems: Investigation of the supercritical adsorption and in vitro evaluations. Mater, 13:329.
68. Lowman, A., Brewer, E., Smith, N.G. (2019). Cross-linked hydrogels and method of making the same. Patent No. US10507264B1.
69. Lupi, F.R., Shakeel, A., Greco, V., Rossi, C.O., Baldino, N., Gabriele, D. (2016). A rheological and microstructural characterisation of bigels for cosmetic and pharmaceutical uses. Mater Sci Eng: C, 69:358–365.
70. Mahajan, S.S., Chaudhari, R.Y., Patil, V.R. (2021). Formulation and evaluation of topical proniosomal gel of ciclopirox for antifungal therapy. Int J Pharm Investig, 11:56–62.
71. Mahale, N.B., Thakkar, P.D., Mali, R.G., Walunj, D.R., Chaudhari, S.R. (2012). Niosomes: Novel sustained release nonionic stable vesicular systems–an overview. Adv Colloid Interface Sci, 183:46–54.
72. Marianecci, C., Carafa, M., Marzio, L.D., Rinaldi, F., Di Meo, C., Matricardi, P., Alhaique, F., Coviello, T. (2011). A new vesicle loaded hydrogel system suitable for topical applications: Preparation and Characterization. J Pharm Pharm Sci, 14:336–346.
73. Marianecci, C., Carafa, M., Marzio, L.D., Rinaldi, F., Di Meo, C., Matricardi, P., Alhaique, F., Coviello, T. (2011). A new vesicle loaded hydrogel system suitable for topical applications: Preparation and Characterization. J Pharm Pharm Sci, 14:336–346.
74. Martinez, R.M., Magalhães, W.V., da Silva Sufi, B., Padovani, G., Nazato, L.I., Velasco, M.V., da Silva Lannes, S.C., Baby, A.R. (2021). Vitamin E-loaded bigels and emulsions: Physicochemical characterization and potential biological application. Colloid Surf B: Biointerfaces, 201:111651.
75. Martins, A.J., Vicente, A.A., Pastrana, L.M., Cerqueira, M.A. (2020). Oleogels for development of health-promoting food products. Food Sci Human Wellness, 9:31–39.
76. Marwah, P., Tasz, M.K., Welzel, K. (2021). Roach gel formulations. Patent No. US20210137101A1.
77. Masotti, A., Vicennati, P., Alisi, A., Marianecci, C., Rinaldi, F., Carafa, M., Ortaggi, G. (2010). Novel Tween 20 derivatives enable the formation of efficient pH-sensitive drug delivery vehicles for human heptaoblastoma. Bioorg Med Chem Lett, 2:3021–3025.
78. Mendonça Munhoz, A., Santanelli di Pompeo, F., De Mezerville, R. (2017). Nanotechnology, nanosurfaces and silicone gel breast implants: current aspects. Case Rep Plast Surg Hand Surg, 4:99–113.
79. Murdan, S. (2005). Organogels in drug delivery. Expert Opin Drug Deliv, 2:489–505.
80. Nabi, S.A., Sheraz, M.A., Ahmed, S., Mustaan, N., Ahmad, I. (2016). Pharmaceutical gels: A review. RADS J Pharm Pharm Sci, 4:40–48.
81. Nagorski, H. (1994). Characterization of a new superabsorbent polymer generation. Superabsorbent Polym, 573:99–111.
82. Ojha, A., Ojha, M., Madhav, N.S. (2017). Recent advancement in emulgel: A novel approach for topical drug delivery. Int J Adv Pharm, 6:1–21.
83. Ollio, A., Ollio, J. (2009). The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydr Polym, 75:125–129.
84. Omidian, H., Park, K., Rocca, J.G. (2007). Recent developments in superporous hydrogels. J Pharm Pharmacol, 59:317–327.
85. Omidian, H., Park, K. (2008). Swelling agents and devices in oral drug delivery. J Drug Deliv Sci Technol, 18:83–93.
86. Omidian, H., Rocca, J.G., Park, K. (2005). Advances in superporous hydrogels. J Control Rel, 102:3–12.
87. Panin, G. (2019). Hydrophobic gel based on vitamin e free from silicone products for topical application. Patent No. EP3372221B1.
88. Park, H., Park, K. (1996). Hydrogels in bioapplications, ACS Symposium Series, ACS Publications, NY, USA, pp. 2–10.
89. Patel, D., Patel, V. (2021). Development and characterization of pluronic lecithin organogel containing fluocinolone acetonide. Drug Dev Ind Pharm, 47:377–384.
90. Patil, P.B., Datir, S.K., Saudagar, R.B. (2019). A review on topical gels as drug delivery system. J Drug Deliv Ther, 9:989–994.
91. Pawbake, G.R., Shirolkar, S.V. (2020). Microemulgel: A promising approach to improve the therapeutic efficacy of drug. J Crit Rev, 7:1137–1143.
92. Peppas, N.A., Mikos, A.G. (2019). Preparation methods and structure of hydrogels. In: Hydrogels in Medicine and Pharmacy CRC press, Boca Raton, FL, USA, pp. 1–26.
93. Peppas, N.A., Barr-Howell, B.D. (2019). Characterization of the cross-linked structure of hydrogels. In: Hydrogels in Medicine and Pharmacy, CRC press, Boca Raton, FL, USA, pp. 27–56.
94. Pinelli, F., Perale, G., Rossi, F. (2020). Coating and functionalization strategies for nanogels and nanoparticles for selective drug delivery. Gels, 6:1–16.
95. Pinzaru, I., Tanase, A., Enatescu, V., Coricovac, D., Bociort, F., Marcovici, I., Watz, C., Vlaia, L., Soica, C., Dehelean, C. (2021). Proniosomal gel for topical delivery of rutin: Preparation, physicochemical characterization and in-vitro toxicological profile using 3D reconstructed human epidermis tissue and 2D Cells. Antioxidants, 100:85.
96. Pușcaș, A., Mureșan, V., Socaciu, C., Muste, S. (2020). Oleogels in food: A review of current and potential applications. Foods, 9:70.
97. Rajalekshmy, G.P., Rekha, M.R. (2021). Synthesis and evaluation of an alginate-methacrylate xerogel for insulin delivery towards wound healing applications. Ther Deliv, 12:215–234.
98. Rajiv, K., Om, P.K. (2005). Lecithin organogel as a potential phospholipidstructured system for topical drug delivery: A review. AAPS PharmaSciTech, 6:298–310.
99. Rathod, H.J., Mehta, D.P. (2015). A review on pharmaceutical gel. Int J Pharm Sci, 1:33–47.
100. Rehman, K., Amin, M.C., Zulfakar, M.H. (2014). Development and physical characterization of polymer-fish oil bigel (hydrogel/oleogel) system as a transdermal drug delivery vehicle. J Oleo Sci, ess14101.
101. Rehman, K., Zulfakar, M.H. (2014). Recent advances in gel technologies for topical and transdermal drug delivery. Drug Dev Ind Pharm, 40:433–440.
102. Sahoo, S., Kumar, N., Bhattacharya, C., Sagiri, S.S., Jain, K., Pal, K., Ray, S.S., Nayak, B. (2011). Organogels: Properties and applications in drug delivery. Des Monomers Polym, 14:95–108.
103. Salabat, A., Parsi, E. (2021). Ex vivo evaluation of celecoxib release from ionic liquid-based microemulsions and microemulgels for topical applications. J Iran Chem Soc, 18:1355–1361.
104. Sanapalli, B.K., Kannan, E., Balasubramanian, S., Natarajan, J., Baruah, U.K., Karri, V.V. (2018). Pluronic lecithin organogel of 5-aminosalicylic acid for wound healing. Drug Dev Ind Pharm, 44:1650–1658.
105. Sannino, A., Esposito, A., Rosa, A.D., Cozzolino, A., Ambrosio, L., Nicolais, L. (2003). Biomedical application of a superabsorbent hydrogel for body water elimination in the treatment of edemas. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 67:1016–10124.
106. Schuette, W.M., Kinlen, P.J. (2019). Corrosion resistant adhesive sol-gel. Patent No. US10508205B2.
107. Shah, H., Nair, A.B., Shah, J., Jacob, S., Bharadia, P., Haroun, M. (2021). Proniosomal vesicles as an effective strategy to optimize naproxen transdermal delivery. J Drug Deliv Sci Technol, 63:102479.
108. Shah, S., Rangaraj, N., Laxmikeshav, K., Sampathi, S. (2020). Nanogels as drug carriers–Introduction, chemical aspects, release mechanisms and potential applications. Int J Pharm, 581:119268.
109. Shaikh, I.M., Jadhav, K.R., Gide, P.S., Kadam, V.J., Pisal, S.S. (2006). Topical delivery of aceclofenac from lecithin organogels: Preformulation study. Curr Drug Deliv, 3:417–427.
110. Shakeel, A., Farooq, U., Iqbal, T., Yasin, S., Lupi, F.R., Gabriele, D. (2019). Key characteristics and modelling of bigels systems: A review. Mater Sci Eng: C, 97:932–953.
111. Shakeel, A., Lupi, F.R., Gabriele, D., Baldino, N., De Cindio, B. (2018). Bigels: A unique class of materials for drug delivery applications. Soft Mater, 16:77–93.
112. Shapiro, Y.E. (2011). Structure and dynamics of hydrogels and organogels: an NMR spectroscopy approach. Prog Polym Sci, 36:1184–1253.
113. Shehata, T.M., Ibrahim, M.M., Elsewedy, H.S. (2021). Curcumin niosomes prepared from proniosomal gels: In vitro skin permeability, kinetic and in vivo studies. Polym, 13:791.
114. Shen, H.R., Gan, N. (2020). Injectable long-acting local anesthetic semi-solid gel formulations. Patent No. US10561606B2.
115. Singh, V.K., Anis, A., Al-Zahrani, S., Pradhan, D.K., Pal, K. (2014). Molecular and electrochemical impedance spectroscopic characterization of the carbopol based bigel and its application in iontophoretic delivery of antimicrobials. Int J Electrochem Sci, 9:5049–5060.
116. Soni, G., Yadav, K.S. (2016). Nanogels as potential nanomedicine carrier for treatment of cancer: A mini review of the state of the art. Saudi Pharmaceut J, 24:133–139.
117. Soni, K.S., Desale, S.S., Bronich, T.K. (2016). Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J Control Rel, 240:109–126.
118. Sreekumar, M., Mathan, S., Mathew, S.S., Dharan, S.S. (2020). Bigels: An Updated Review. J Pharm Sci Res, 12:1306–1308.
119. Stergar, J., Maver, U. (2016). Review of aerogel-based materials in biomedical applications. J Sol-Gel Sci Technol, 77:738–752.
120. Sun, Z., Li, Z., Qu, K., Zhang, Z., Niu, Y., Xu, W., Ren, C. (2021). A review on recent advances in gel adhesion and their potential applications. J Mol Liq, 115254.
121. Sushi, l.R., Santosh, S.B., Vaibhav, U., Mishra, V., Gahane, A., Jain, S.K. (2012). Lecithin organogel: A unique micellar system for the delivery of bioactive agents in the treatment of skin aging. Acta Pharmaceut Sinica B, 2:8–15.
122. Taveira, S.F., Nomizo, A., Lopez, R.F. (2009). Effect of the iontophoresis of a chitosan gel on doxorubicin skin penetration and cytotoxicity. J Control Release, 134:35–40.
123. Thomas, L., Zakir, F., Mirza, M.A., Anwer, M.K., Ahmad, F.J., Iqbal, Z. (2017). Development of curcumin loaded chitosan polymer based nanoemulsion gel: In vitro, ex vivo evaluation and in vivo wound healing studies. Int J Biol Macromol, 101:569–579.
124. Tiryaki, E., Elalmış, Y.B., İkizler, B.K., Yücel, S. (2020). Novel organic/inorganic hybrid nanoparticles as enzyme-triggered drug delivery systems: Dextran and dextran aldehyde coated silica aerogels. J Drug Deliv Sci Technol, 56:101517.
125. Ullah, F., Othman, M.B., Javed, F., Ahmad, Z., Akil, H.M. (2015). Classification, processing and application of hydrogels: A review. Mater Sci Eng: C, 57:414–433.
126. United States Pharmacopeia 30/National Formulary 25, United States Pharmacopeial Convention, Inc., Rockville, MD, 2021; Electronic version.
127. Uros, M., Aliaz, G., Marian, B., Odon, P. (2007). Novel hybrid silica xerogels for stabilization and controlled release of drug. Int J Pharm, 330:164–174.
128. van der Poll, D.G., Blasioli, D.J., Zugates, G.T. (2021). Formulation of nanostructured gels for increased agent loading and adhesion. Patent No. US10881745B2.
129. Varshosaz, J., Andalib, S., Tabbakhian, M., Ebrahimzadeh, N. (2013). Development of lecithin nanoemulsion based organogels for permeation enhancement of metoprolol through rat skin. J Nanomat, 2013.
130. Vashist, A., Vashist, A., Gupta, Y.K., Ahmad, S. (2014). Recent advances in hydrogel based drug delivery systems for the human body. J Mat Chem B, 2:147–166.
131. Verma, A., Tiwari, A., Saraf, S., Panda, P.K., Jain, A., Jain, S.K. (2020). Emerging potential of niosomes in ocular delivery. Expert Opin Drug Deliv, 1–7.
132. Vintiloiu, A., Leroux, J.C. (2008). Organogels and their use in drug delivery—a review. J Control Release, 125:179–192.
133. Willimann, H., Walde, P., Luisi, L., Gazzaniga, A., Stroppolo, F. (1992). Lecithin organogels as matrixfor transdermal transport drugs. J Pharm Sci, 81:871–874.
134. Zatz, J.L., Kushla, G.P. (1989). Gels, In: Lieberman HA., Rieger MM, Banker GS. Pharmaceutical Dosage Form: Disperse Systems, 2nd ed., Vol. 2, Marcel Dekker, NY, USA, pp. 399–421.
135. Zhang, P., Jiang, Q., Zheng, Y., Li, J. (2020). Double-nano silica xerogel contributes to establish nifedipine delivery system with superior delivery effect. Microporous Mesoporous Mater, 296:109996.
136. Zhang, Q., Song, Y., Page, S.W., Garg, S. (2018). Evaluation of transdermal drug permeation as modulated by lipoderm and pluronic lecithin organogel. J Pharm Sci, 107:587–594.
137. Zhang, Y., Gao, W., Chen, Y., Escajadillo, T., Ungerleider, J., Fang, R.H., Christman, K., Nizet, V., Zhang, L. (2017). Self-assembled colloidal gel using cell membrane-coated nanosponges as building blocks. ACS Nano, 11:11923–11930.

Most read articles by the same author(s)