ANTI-ERYPTOTIC POTENTIAL OF SELENIUM AGAINST GENTAMICIN-INDUCED ERYPTOSIS

Main Article Content

Muhammad Ahmad Majeed
Maham Abdul Bari Khan
Kinza Khalid
Muhammad Hasnain
Abdul Qayoom
Aneeza Kokab
Hafiz Muhammad Aslam
Kashif Jilani

Keywords

.

Abstract

Gentamicin, an aminoglycoside, is used to treat serious infections such as blood infections (septicemia) and brain and spinal cord infections. Recent years have shown an increase in antibiotic use, which can be associated with side effects like eryptosis, a process mainly induced by oxidative stress, ceramide production, and energy depletion, which can lead to anemia. Eryptosis, quite similar to apoptosis, is defined by cell shrinkage, membrane blebbing, and membrane phospholipid scrambling with phosphatidylserine exposure at the cell surface. The core purpose of this research was to examine the eryptotic effect of gentamicin through the oxidative stress pathway and study the anti-eryptotic potential of selenium against gentamicin-induced eryptosis. In this study, erythrocytes were treated with therapeutical doses (9-18μM) of gentamicin and selenium for 48 hours according to experimental requirements. To assess the cytotoxicity of gentamicin hemolysis% was estimated, the oxidative potential of gentamicin and the anti-oxidative potential of selenium was confirmed by investigating the levels of glutathione peroxidase, superoxide dismutase and catalase, to confirm their eryptotic role mean cell volume(MCV) was measured, role of Ca+2 in eryptosis was confirmed by using a calcium-channel blocker, amlodipine. Results illustrate that an increase in gentamicin concentration directly affects hemolysis%, gentamicin treated cells showed low levels of enzyme activity while gentamicin+ selenium-treated cells showed better activity of antioxidants, less than normal MCV was observed in gentamicin-treated cells which is a direct indication that cell is going through eryptosis, calcium channel blocker showed the involvement of Ca2+ in eryptosis.

Abstract 224 | PDF Downloads 110

References

1. Berg, C., Engels, I., Rothbart, A., Lauber, K., Renz, A., Schlosser, S., Schulze-Osthoff, K., & Wesselborg, S. (2001). Human mature red blood cells express caspase-3 and caspase-8, but are devoid of mitochondrial regulators of apoptosis. Cell Death & Differentiation, 8(12), 1197-1206.
2. Bissinger, R., Bhuyan, A. A. M., Qadri, S. M., & Lang, F. (2019). Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. The FEBS journal, 286(5), 826-854.
3. Calabrò, S., Alzoubi, K., Bissinger, R., Jilani, K., Faggio, C., & Lang, F. (2015). Enhanced eryptosis following juglone exposure. Basic & clinical pharmacology & toxicology, 116(6), 460-467.
4. Chaves, B. J., & Tadi, P. (2020). Gentamicin.
5. d'Onofrio, G., Chirillo, R., Zini, G., Caenaro, G., Tommasi, M., & Micciulli, G. (1995). Simultaneous measurement of reticulocyte and red blood cell indices in healthy subjects and patients with microcytic and macrocytic anemia.
6. Duranton, C., Huber, S. M., & Lang, F. (2002). Oxidation induces a Cl−‐dependent cation conductance in human red blood cells. The Journal of physiology, 539(3), 847-855.
7. Gargouri, B., Yousif, N. M., Bouchard, M., Fetoui, H., & Fiebich, B. L. (2018). Inflammatory and cytotoxic effects of bifenthrin in primary microglia and organotypic hippocampal slice cultures. Journal of neuroinflammation, 15, 1-19.
8. Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: II. Purification and quantitative relationship with water-soluble protein in seedlings. Plant physiology, 59(2), 315-318.
9. Harris, E. D. (1992). Regulation of antioxidant enzymes 1. The FASEB Journal, 6(9), 2675-2683.
10. Hasani, M., Djalalinia, S., Khazdooz, M., Asayesh, H., Zarei, M., Gorabi, A. M., Ansari, H., Qorbani, M., & Heshmat, R. (2019). Effect of selenium supplementation on antioxidant markers: A systematic review and meta-analysis of randomized controlled trials. Hormones, 18, 451-462.
11. Hassan, M., Hadi, R., Al‐Rawi, Z., Padron, V. A., & Stohs, S. J. (2001). The glutathione defense system in the pathogenesis of rheumatoid arthritis. Journal of Applied Toxicology: An International Journal, 21(1), 69-73.
12. Hoth, M., & Penner, R. (1992). Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature, 355(6358), 353-356.
13. Ilyas, S., Jilani, K., Sikandar, M., Siddiq, S., Riaz, M., Naveed, A., Bibi, I., Nawaz, H., Irfan, M., & Asghar, A. (2020). Stimulation of erythrocyte membrane blebbing by naproxen sodium. Dose-Response, 18(1), 1559325819899259.
14. Jaleel, C. A., Gopi, R., Manivannan, P., & Panneerselvam, R. (2008). Exogenous application of triadimefon affects the antioxidant defense system of Withania somnifera Dunal. Pesticide biochemistry and physiology, 91(3), 170-174.
15. Jilani, K., & Lang, F. (2013). Carmustine-induced phosphatidylserine translocation in the erythrocyte membrane. Toxins, 5(4), 703-716.
16. Kurutas, E. B. (2015). The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutrition journal, 15, 1-22.
17. Lang, E., & Lang, F. (2015). Mechanisms and pathophysiological significance of eryptosis, the suicidal erythrocyte death. Seminars in cell & developmental biology,
18. Lang, E., Qadri, S. M., & Lang, F. (2012). Killing me softly–suicidal erythrocyte death. The international journal of biochemistry & cell biology, 44(8), 1236-1243.
19. Lang, F., & Qadri, S. M. (2012). Mechanisms and significance of eryptosis, the suicidal death of erythrocytes. Blood purification, 33(1-3), 125-130.
20. Lucero, G.-M. A., Marcela, G.-M., Sandra, G.-M., & Manuel, G.-O. L. (2015). Naproxen-enriched artificial sediment induces oxidative stress and genotoxicity in Hyalella azteca. Water, Air, & Soil Pollution, 226, 1-10.
21. Lupescu, A., Bissinger, R., Warsi, J., Jilani, K., & Lang, F. (2014). Stimulation of erythrocyte cell membrane scrambling by gedunin. Cellular Physiology and Biochemistry, 33(6), 1838-1848.
22. Maier, C. M., & Chan, P. H. (2002). Book review: role of superoxide dismutases in oxidative damage and neurodegenerative disorders. The Neuroscientist, 8(4), 323-334.
23. Malik, A., Bissinger, R., Liu, G., Liu, G., & Lang, F. (2015). Enhanced eryptosis following gramicidin exposure. Toxins, 7(5), 1396-1410.
24. Mehdi, Y., Hornick, J.-L., Istasse, L., & Dufrasne, I. (2013). Selenium in the environment, metabolism and involvement in body functions. Molecules, 18(3), 3292-3311.
25. Narayana, K. (2008). An aminoglycoside antibiotic gentamycin induces oxidative stress, reduces antioxidant reserve and impairs spermatogenesis in rats. The Journal of toxicological sciences, 33(1), 85-96.
26. Neve, J. (1995). Human selenium supplementation as assessed by changes in blood selenium concentration and glutathione peroxidase activity. Journal of Trace Elements in Medicine and Biology, 9(2), 65-73.
27. Pretorius, E., Oore-ofe, O., Mbotwe, S., & Bester, J. (2016). Erythrocytes and their role as health indicator: Using structure in a patient-orientated precision medicine approach. Blood reviews, 30(4), 263-274.
28. Rana, R. B., Jilani, K., Shahid, M., Riaz, M., Ranjha, M. H., Bibi, I., Asghar, A., & Irfan, M. (2019). Atorvastatin induced erythrocytes membrane blebbing. Dose-Response, 17(3), 1559325819869076.
29. Rapido, F. (2017). The potential adverse effects of haemolysis. Blood Transfusion, 15(3), 218.
30. Shahid, M., Riaz, M., Talpur, M., & Pirzada, T. (2016). Phytopharmacology of Tribulus terrestris. Journal of biological regulators and homeostatic agents, 30(3), 785-788.
31. Singh, R. P., Sharad, S., & Kapur, S. (2004). Free radicals and oxidative stress in neurodegenerative diseases: relevance of dietary antioxidants. J Indian Acad Clin Med, 5(3), 218-225.
32. Sojo-Dorado, J., & Rodríguez-Baño, J. (2017). Gentamicin. In Kucers' The Use of Antibiotics (pp. 964-991). CRC Press.
33. Ullah, S., Li, Z., Hasan, Z., Khan, S. U., & Fahad, S. (2018). Malathion induced oxidative stress leads to histopathological and biochemical toxicity in the liver of rohu (Labeo rohita, Hamilton) at acute concentration. Ecotoxicology and Environmental Safety, 161, 270-280.
34. Vijayaraghavan, R., & Paneerselvam, C. (2011). Erythrocyte antioxidant enzymes in multibacillary leprosy patients.
35. Wang, H.-w., Xu, H.-m., Xiao, G.-h., Zhao, C.-l., Wang, Z.-h., Cai, D.-b., Li, H.-q., & Zhao, J.-h. (2010). Effects of selenium on the antioxidant enzymes response of Neocaridina heteropoda exposed to ambient nitrite. Bulletin of environmental contamination and toxicology, 84(1), 112-117.
36. Zbidah, M., Lupescu, A., Jilani, K., Fajol, A., Michael, D., Qadri, S. M., & Lang, F. (2012). Apigenin-induced suicidal erythrocyte death. Journal of agricultural and food chemistry, 60(1), 533-538.

Most read articles by the same author(s)