IMPACT OF DIETARY SUPRA NUTRITIONAL SELENIUM SUPPLEMENTATION ON FAT METABOLISM IN THE SKELETAL MUSCLES OF GOATS

Main Article Content

Muhammad Anees Memon
Moolchand Malhi
Allah Bux Kachiwal
Ghulam Shabir Barham
Mohammad Farooque Hassan
Ghulam Murtaza Lochi
Tarique Ahmed Khokhar
Syed Abdul Hadi
Abdul Kabir

Keywords

Selenium, Supplementation, Fat metabolism, Skeletal muscles, Goat

Abstract

This study aimed to evaluate the effects of dietary supranutritional selenium (Se) supplementation on gene expression related to fat metabolism in the skeletal muscles of male goats. Sixteen male goats, aged 3-4 months and weighing 10-13 kg, were randomly divided into two groups (n=8 each) and housed individually at the Livestock Experimental Station, Sindh Agriculture University, Tandojam. The goats underwent a 2-week adaptation period, during which they were offered a diet containing concentrate and forage. Afterward, they were fed a basal diet with two different Se levels: Group A (control) received 0.3 mg/kg diet Se, while Group B (treatment) received 0.65 mg/kg diet Se, with selenium yeast (Sel-Plex®, Alltech®, USA) as the organic Se source. Over the 10-week experimental period, mRNA expression levels of genes involved in fat metabolism, including peroxisome proliferator-activated receptor alpha (PPARα), lipoprotein lipase (LPL), carnitine palmitoyltransferase 1 (CPT-1), cytosolic phospholipase A2 (cPLA2), and heart-type fatty acid-binding protein (H-FABP), were analyzed via quantitative real-time PCR. Results indicated a significant increase (P < 0.05) in the expression of these genes in Group B compared to Group A. In conclusion, this study demonstrates that dietary supranutritional selenium supplementation significantly enhances the expression of key genes involved in fat metabolism, such as PPARα, LPL, CPT-1, cPLA2, and H-FABP, in the skeletal muscles of goats. The upregulation of these genes suggests improved lipid utilization and oxidative capacity, which may contribute to better energy production and meat quality.

Abstract 0 | PDF Downloads 0

References

1. Avery, J. C., & Hoffmann, P. R. (2018). Selenium, selenoproteins, and immunity. Nutrients, 10(9), 1203.
2. Egan, B., & Zierath, J. R. (2013). Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab., 17(2), 162-184.
3. Glatz, J. F. C., Börchers, T., Spener, F., & van der Vusse, G. J. (1995). Fatty acids in cell signalling: modulation by lipid binding proteins. Prostaglandins Leukot. Essent. Fatty Acids, 52(2-3), 121-127.
4. Huang, Z., Rose, A. H., & Hoffmann, P. R. (2012). The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal., 16(7), 705-743.
5. Jing, M., Gakhar, N., Gibson, R. A., & House, J. D. (2013). Dietary and ontogenic regulation of fatty acid desaturase and elongase expression in broiler chickens. Prostaglandins Leukot. Essent. Fatty Acids, 89(2-3), 107-113.
6. Kersten, S., Seydoux, J., Peters, J. M., Gonzalez, F. J., Desvergne, B., & Wahli, W. (1999). Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J. Clin. Invest., 103(11), 1489-1498.
7. Lee, D., Won, J. H., Auh, C. K., & Park, Y. M. (2003). Purification and characterization of a cytosolic phospholipase A2 from rat liver. Molecules Cells, 16(3), 361-367.
8. Liao, S., Omage, S. O., Börmel, L., Kluge, S., Schubert, M., Wallert, M., & Lorkowski, S. (2022). Vitamin E and metabolic health: Relevance of interactions with other micronutrients. Antioxidants, 11(9), 1785.
9. Liu, J., Wang, Z., Li, C., Chen, Z., Zheng, A., Chang, W., ... & Cai, H. (2023). Effects of Selenium Dietary Yeast on Growth Performance, Slaughter Performance, Antioxidant Capacity, and Selenium Deposition in Broiler Chickens. Animals, 13(24), 3830.
10. McGarry, J. D., & Brown, N. F. (1997). The mitochondrial carnitine palmitoyltransferase system: From concept to molecular analysis. Eur. J. Biochem., 244(1), 1-14.
11. Park, S. S., & Seo, Y. K. (2020). Excess accumulation of lipid impairs insulin sensitivity in skeletal muscle. Int. J. Mol. Sci., 21(6), 1949.
12. Pfaehler, A., Nanjappa, M. K., Coleman, E. S., Mansour, M., Wanders, D., Plaisance, E. P., ... & Akingbemi, B. T. (2012). Regulation of adiponectin secretion by soy isoflavones has implication for endocrine function of the testis. Toxicol. Lett., 209(1), 78-85.
13. Rayman, M. P. (2012). Selenium and human health. Lancet, 379(9822), 1256-1268.
14. Schomburg, L. (2012). Selenium, selenoproteins and the thyroid gland: interactions in health and disease. Nat. Rev. Endocrinol., 8(3), 160-171.
15. Shi, C., Yue, F., Shi, F., Qin, Q., Wang, L., Wang, G., ... & She, J. (2021). Selenium-containing amino acids protect dextran sulfate sodium-induced colitis via ameliorating oxidative stress and intestinal inflammation. J. Inflamm. Res., 85-95.
16. Tinkov, A. A., Ajsuvakova, O. P., Filippini, T., Zhou, J. C., Lei, X. G., Gatiatulina, E. R., ... & Skalny, A. V. (2020). Selenium and selenoproteins in adipose tissue physiology and obesity. Biomolecules, 10(4), 658.
17. Wang, J., Jing, J., Gong, Z., Tang, J., Wang, L., Jia, G., ... & Zhao, H. (2023). Different Dietary Sources of Selenium Alleviate Hepatic Lipid Metabolism Disorder of Heat-Stressed Broilers by Relieving Endoplasmic Reticulum Stress. Int. J. Mol. Sci., 24(20), 15443.
18. Zhang, J. L., Zhang, Z. W., Shan, A. S., & Xu, S. W. (2014). Effects of dietary selenium deficiency or excess on gene expression of selenoprotein N in chicken muscle tissues. Biol. Trace Elem. Res., 157, 234-241.
19. Zhao, J., Zou, H., Huo, Y., Wei, X., & Li, Y. (2022). Emerging roles of selenium on metabolism and type 2 diabetes. Front. Nutr., 9, 1027629.
20. Zoidis, E., Seremelis, I., Kontopoulos, N., & Danezis, G. P. (2018). Selenium-dependent antioxidant enzymes: Actions and properties of selenoproteins. Antioxidants, 7(5), 66.

Most read articles by the same author(s)