EFFECTS OF DEXMEDETOMIDINE ON INTRAOPERATIVE HEMODYNAMICS AND PROPOFOL REQUIREMENT IN PATIENTS UNDERGOING LAPAROSCOPIC CHOLECYSTECTOMY

Main Article Content

Dr. Mohammad Nazim Shameem

Keywords

Dexmedetomidine, hemodynamics, laparoscopic cholecystectomy, propofol

Abstract

Background: Despite multiple benefits, laparoscopic surgery always poses anesthetic challenge due to significant alteration of hemodynamics. Various pharmacological agents have been used for the same with variable response. Dexmedetomidine, in addition to sympatholytic effect, diminishes intraoperative requirement of anesthetics including propofol. The present study was conducted to evaluate the effects of intravenous dexmedetomidine on intraoperative hemodynamics and propofol requirement using bispectral index (BIS) in laparoscopic cholecystectomy.
Methods: Forty patients undergoing laparoscopic cholecystectomy were randomly allocated to receive either dexmedetomidine (Group A; n = 20) or normal saline (Group B; n = 20). In Group A, dexmedetomidine was loaded (1 μg/kg) before anesthesia induction and infused (0.6 μg/kg/h) during surgery. Anesthesia was induced with propofol, and maintenance infusion rate was adjusted to a BIS of 55–60 in both groups. Mean arterial pressure (MAP) and heart rate (HR) were recorded at baseline and at various time points from loading of drugs to just after tracheal extubation. All infusions were stopped with removal of scope from abdominal cavity. Recovery time (time from end of all infusions to BIS = 80) and extubation time (time from end of all infusions to extubation) were noted.
Results: After intubation, MAP and HR values in Group A were significantly lower than Group B at various time points of study. To achieve similar BIS values, significantly low doses of propofol were required in Group A during induction and intraoperatively. Doses were reduced by 36% and 31%, respectively. Mean recovery time and mean extubation time in Group A were also significantly less.
Conclusion: During propofol-based anesthesia for laparoscopic cholecystectomy, dexmedetomidine provides stable intraoperative hemodynamics and reduces propofol requirement for induction as well as maintenance, without compromising recovery profile.
Abstract 24 | PDF Downloads 9

References

1. Dubois F, Icard P, Berthelot G, Levard H. Coelioscopic cholecystectomy. Preliminary report of 36 cases. Ann Surg. 1990;211:60–2. [PMC free article] [PubMed] [Google Scholar]
2. Grace PA, Quereshi A, Coleman J, Keane R, McEntee G, Broe P, et al. Reduced postoperative hospitalization after laparoscopic cholecystectomy. Br J Surg. 1991;78:160–2. [PubMed] [Google Scholar]
3. Joris J, Cigarini I, Legrand M, Jacquet N, De Groote D, Franchimont P, et al. Metabolic and respiratory changes after cholecystectomy performed via laparotomy or laparoscopy. Br J Anaesth. 1992;69:341–5. [PubMed] [Google Scholar]
4. Joris JL, Noirot DP, Legrand MJ, Jacquet NJ, Lamy ML. Hemodynamic changes during laparoscopic cholecystectomy. Anesth Analg. 1993;76:1067–71. [PubMed] [Google Scholar]
5. Lenz RJ, Thomas TA, Wilkins DG. Cardiovascular changes during laparoscopy. Studies of stroke volume and cardiac output using impedance cardiography. Anaesthesia. 1976;31:4–12. [PubMed] [Google Scholar]
6. Koivusalo AM, Scheinin M, Tikkanen I, Yli-Suomu T, Ristkari S, Laakso J, et al. Effects of esmolol on haemodynamic response to CO2 pneumoperitoneum for laparoscopic surgery. Acta Anaesthesiol Scand. 1998;42:510–7. [PubMed] [Google Scholar]
7. Feig BW, Berger DH, Dougherty TB, Dupuis JF, Hsi B, Hickey RC, et al. Pharmacologic intervention can reestablish baseline hemodynamic parameters during laparoscopy. Surgery. 1994;116:733–9. [PubMed] [Google Scholar]
8. Joris JL, Hamoir EE, Hartstein GM, Meurisse MR, Hubert BM, Charlier CJ, et al. Hemodynamic changes and catecholamine release during laparoscopic adrenalectomy for pheochromocytoma. Anesth Analg. 1999;88:16–21. [PubMed] [Google Scholar]
9. Joris JL, Chiche JD, Canivet JL, Jacquet NJ, Legros JJ, Lamy ML. Hemodynamic changes induced by laparoscopy and their endocrine correlates: Effects of clonidine. J Am Coll Cardiol. 1998;32:1389–96. [PubMed] [Google Scholar]
10. Laisalmi M, Koivusalo AM, Valta P, Tikkanen I, Lindgren L. Clonidine provides opioid-sparing effect, stable hemodynamics, and renal integrity during laparoscopic cholecystectomy. Surg Endosc. 2001;15:1331–5. [PubMed] [Google Scholar]
11. Jalonen J, Hynynen M, Kuitunen A, Heikkilä H, Perttilä J, Salmenperä M, et al. Dexmedetomidine as an anesthetic adjunct in coronary artery bypass grafting. Anesthesiology. 1997;86:331–45. [PubMed] [Google Scholar]
12. Yazbek-Karam VG, Aouad MM. Perioperative uses of dexmedetomidine. Middle East J Anaesthesiol. 2006;18:1043–58. [PubMed] [Google Scholar]
13. Hall JE, Uhrich TD, Barney JA, Arain SR, Ebert TJ. Sedative, amnestic, and analgesic properties of small-dose dexmedetomidine infusions. Anesth Analg. 2000;90:699–705. [PubMed] [Google Scholar]
14. Bhattacharjee DP, Nayek SK, Dawn S, Bandopadhyay G, Gupta K. Effects of dexmedetomidine on hemodynamics in patients undergoing laparoscopic cholecystectomy – A comparative study. J Anaesth Clin Pharmacol. 2010;26:45–8. [Google Scholar]
15. Aantaa R, Kanto J, Scheinin M, Kallio A, Scheinin H. Dexmedetomidine, an alpha 2-adrenoceptor agonist, reduces anesthetic requirements for patients undergoing minor gynecologic surgery. Anesthesiology. 1990;73:230–5. [PubMed] [Google Scholar]
16. Khan ZP, Munday IT, Jones RM, Thornton C, Mant TG, Amin D. Effects of dexmedetomidine on isoflurane requirements in healthy volunteers 1: Pharmacodynamic and pharmacokinetic interactions. Br J Anaesth. 1999;83:372–80. [PubMed] [Google Scholar]
17. Dutta S, Karol MD, Cohen T, Jones RM, Mant T. Effect of dexmedetomidine on propofol requirements in healthy subjects. J Pharm Sci. 2001;90:172–81. [PubMed] [Google Scholar]
18. Ngwenyama NE, Anderson J, Hoernschemeyer DG, Tobias JD. Effects of dexmedetomidine on propofol and remifentanil infusion rates during total intravenous anesthesia for spine surgery in adolescents. Paediatr Anaesth. 2008;18:1190–5. [PubMed] [Google Scholar]
19. Kang WS, Kim SY, Son JC, Kim JD, Muhammad HB, Kim SH, et al. The effect of dexmedetomidine on the adjuvant propofol requirement and intra operative hemodynamics during remifentanil-based anesthesia. Korean J Anesthesiol. 2012;62:113–8. [PMC free article] [PubMed] [Google Scholar]
20. Mansour EE. BIS-guided evaluation of dexmedetomidine vs. midazolam as anaesthetic adjuncts in off-pump coronary artery bypass surgery (OPCAB) Saudi J Anaesth. 2009;3:7–14. [Google Scholar]
21. Slogoff S, Keats AS. Does perioperative myocardial ischemia lead to postoperative myocardial infarction? Anesthesiology. 1985;62:107–14. [PubMed] [Google Scholar]
22. Aho M, Scheinin M, Lehtinen AM, Erkola O, Vuorinen J, Korttila K. Intramuscularly administered dexmedetomidine attenuates hemodynamic and stress hormone responses to gynecologic laparoscopy. Anesth Analg. 1992;75:932–9. [PubMed] [Google Scholar]
23. Feld JM, Hoffman WE, Stechert MM, Hoffman IW, Ananda RC. Fentanyl or dexmedetomidine combined with desflurane for bariatric surgery. J Clin Anesth. 2006;18:24–8. [PubMed] [Google Scholar]
24. Ramsay MA, Saha D, Hebeler RF. Tracheal resection in the morbidly obese patient: The role of dexmedetomidine. J Clin Anesth. 2006;18:452–4. [PubMed] [Google Scholar]
25. Tufanogullari B, White PF, Peixoto MP, Kianpour D, Lacour T, Griffin J, et al. Dexmedetomidine infusion during laparoscopic bariatric surgery: The effect on recovery outcome variables. Anesth Analg. 2008;106:1741–8. [PubMed] [Google Scholar]
26. Manne GR, Upadhyay MR, Swadia V. Effects of low dose dexmedetomidine infusion on haemodynamic stress response, sedation and post-operative analgesia requirement in patients undergoing laparoscopic cholecystectomy. Indian J Anaesth. 2014;58:726–31. [PMC free article] [PubMed] [Google Scholar]
27. Chauhan Y, Parikh H. Effects of dexmedetomidine on hemodynamics in patients undergoing laproscopic surgeries under general anaesthesia – A comparative study. Indian J Appl Res. 2014;4:70–2. [Google Scholar]
28. Vora KS, Baranda U, Shah VR, Modi M, Parikh GP, Butala BP. The effects of dexmedetomidine on attenuation of hemodynamic changes and there effects as adjuvant in anesthesia during laparoscopic surgeries. Saudi J Anaesth. 2015;9:386–92. [PMC free article] [PubMed] [Google Scholar]
29. Laxmi Narsaiah G, Murali CH, Srinivasa Rao B, Praveeen Kumar D, Saravan Kumar G. Haemodynamic effects of low dose dexmedetomidine infusion in patients undergoing laparoscopic cholecystectomy – A randomized study. Sch J App Med Sci. 2016;4:1736–40. [Google Scholar]
30. Chavan SG, Shinde GP, Adivarekar SP, Gujar SH, Mandhyan S. Effects of dexmedetomidine on perioperative monitoring parameters and recovery in patients undergoing laparoscopic cholecystectomy. Anesth Essays Res. 2016;10:278–83. [PMC free article] [PubMed] [Google Scholar]
31. Anjum N, Tabish H, Debdas S, Bani HP, Rajat C, Anjana Basu GD. Effects of dexmedetomidine and clonidine as propofol adjuvants on intra-operative hemodynamics and recovery profiles in patients undergoing laparoscopic cholecystectomy: A prospective randomized comparative study. Avicenna J Med. 2015;5:67–73. [PMC free article] [PubMed] [Google Scholar]
32. Keniya VM, Ladi S, Naphade R. Dexmedetomidine attenuates sympathoadrenal response to tracheal intubation and reduces perioperative anaesthetic requirement. Indian J Anaesth. 2011;55:352–7. [PMC free article] [PubMed] [Google Scholar]
33. Ohtani N, Kida K, Shoji K, Yasui Y, Masaki E. Recovery profiles from dexmedetomidine as a general anesthetic adjuvant in patients undergoing lower abdominal surgery. Anesth Analg. 2008;107:1871–4. [PubMed] [Google Scholar]
34. Afanador C, Marulanda L, Torres G, Marín A, Vidal C, Silva G. Effect of intraoperative use of dexmedetomidine on anesthetic requirements and time to tracheal extubation in elective adult heart surgery patients. A retrospective cohort study. Internet J Anesthesiol. 2009;22:2. [Google Scholar]
35. Bajwa SJ, Kaur J, Singh A, Parmar S, Singh G, Kulshrestha A, et al. Attenuation of pressor response and dose sparing of opioids and anaesthetics with pre-operative dexmedetomidine. Indian J Anaesth. 2012;56:123–8. [PMC free article] [PubMed] [Google Scholar]
36. Burow BK, Johnson ME, Packer DL. Metabolic acidosis associated with propofol in the absence of other causative factors. Anesthesiology. 2004;101:239–41. [PubMed] [Google Scholar]
37. Salengros JC, Velghe-Lenelle CE, Bollens R, Engelman E, Barvais L. Lactic acidosis during propofol-remifentanil anesthesia in an adult. Anesthesiology. 2004;101:241–3. [PubMed] [Google Scholar]
38. Hatch DJ. Propofol-infusion syndrome in children. Lancet. 1999;353:1117–8. [PubMed] [Google Scholar]
39. Bray RJ. Propofol infusion syndrome in children. Paediatr Anaesth. 1998;8:491–9. [PubMed] [Google Scholar]