Main Article Content

Muhammad Abdul Basit
Arifah Abdul Kadir
Ubedullah Kaka
Muhammad Arshad Javid
Muhammad Usman Saleem
Sheraz Ahmed Bhatti
Abdul Asim Farooq
Saeed Murtaza
Muhammad Yasir Waqas
Muhammad Nawaz
Hafiz Muhammad Arshad


broiler chickens, herbs, limit dose toxicity, Piper betle, Persicaria odorata


Medicinal plants like herbs are used extensively as an alternative poultry feed additive, replacing antimicrobial drugs. However, these herbs and their bioactive compounds may contain toxic substances that may be harmful. Thus, the present study was conducted to estimate the secondary phytochemical metabolites and acute toxicity of methanolic leaf extract of Piper betle (Pb) and Persicaria odorata (Po) in broiler chickens. A total of 35 broiler chicks were used in this study. The birds were divided into 7 groups randomly on the 21st day of their age. A single oral dose of methanolic leaf extract of P. betle and P. odorata at the rate of 500mg/kg, 1000 mg/kg, and 2,000 mg/kg body weight, was orally gavaged in treated chickens. At the same time, the control group received 0.5% carboxymethyl cellulose (CMC) as a placebo. Quantitative phytochemical screening showed positive quantification of eugenol and quercetin from Pb and Po methanolic leaf extract. On the other hand, the limited dose acute toxicity study did not show any toxicity signs, even at the dose rate of 2000 mg/kg. Furthermore, no deleterious effects were observed on haematological and serum biochemical indices in extract-treated chickens. The histopathological examination showed normal histo-morphological characteristics of the tissues of selected organs. Additionally, no mortality was recorded in the entire study period. Keeping in view the present findings, the LD50 value of the tested extracts was greater than 2000 mg/ kg.

Abstract 101 | pdf Downloads 70


. Pulingam, T.; Parumasivam, T.; Gazzali, A. M.; Sulaiman, A. M.; Chee, J. Y.; Lakshmanan, M.; Sudesh, K.; Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur. j. pharm. sci. 2022, 170, 106103. https://doi.org/10.1016/j.ejps.2021.106103
2. Boovaragamoorthy, G.M.; Anbazhagan, M.; Piruthiviraj, P.; Pugazhendhi, A.; Kumar, S.S.; Al-Dhabi, N.A.; Ghilan, A.K.M.; Arasu, M.V.; Kaliannan, T.; Clinically important microbial diversity and its antibiotic resistance pattern towards various drugs. J. Infect. Public. Health. 2019, 12(6),783–788. https://doi.org/10.1016/j.jiph.2019.08.008
3. Zhang, L.; Gao, F.; Ge, J.; Li, H.; Xia, F.; Bai, H.; Piao, X.; Shi, L.; Potential of Aromatic Plant-Derived Essential Oils for the Control of Foodborne Bacteria and Antibiotic Resistance in Animal Production: A Review. Antibiotics. 2022, 11(11):1673. https://doi.org/10.3390/antibiotics11111673
4. Rafiq, K.; Tofazzal Hossain, M.; Ahmed, R.; Hasan, M. M.; Islam, R.; Hossen, M. I.; Islam, M. R.; Role of different growth enhancers as alternative to in-feed antibiotics in poultry industry. Front. vet. sci. 2022, 8, 794588. https://doi.org/10.3389/fvets.2021.794588
5. El-Sabrout, K.; Khalifah, A.; Mishra, B.; Application of botanical products as nutraceutical feed additives for improving poultry health and production. Vet. World. 2023, 16(2), 369.doi: 10.14202/vetworld.2023.369-379
6. Tariq, L.; Bhat, B. A.; Hamdani, S. S.; Mir, R. A.; Phytochemistry, pharmacology and toxicity of medicinal plants. Medicinal and Aromatic Plants. Healthcare Ind. App. 2021, 217-240.https://doi.org/10.1007/978-3-030-58975-2_8
7. Johnson Afonne, O.; Chinedu Ifediba, E.; Natural Does Not Mean Safe. IntechOpen. 2022,doi: 10.5772/intechopen.104732
8. Valenzuela-Grijalva, N. V.; Pinelli-Saavedra, A.; Muhlia-Almazan, A.; Domínguez-Díaz, D.; González-Ríos, H.; Dietary inclusion effects of phytochemicals as growth promoters in animal production. J. Anim. Sci. Technol. 2017, 59(1),1–17.https://doi.org/10.1186/s40781-017-0133-9
9. Giannenas, I.; Sidiropoulou, E.; Bonos, E.; Christaki, E.; Florou-Paneri, P.; The history of herbs, medicinal and aromatic plants, and their extracts. In-Feed Additives 2020 Jan 1 pp. 1-18. Elsevier Inc. https://doi.org/10.1016/b978-0-12-814700-9.00001-7
10. Srinivasa Rao, B.; Chandrasekaran, C.V.; Srikanth, H.S.; Sasikumar, M.; Edwin Jothie, R.; Haseena, B.; Bharathi, B.; Selvam, R.; Prashanth, D.; Mutagenicity and Acute Oral Toxicity Test for Herbal Poultry Feed Supplements. J. Toxicol., 2018.https://doi.org/10.1155/2018/9412167
11. Williamson, E. M.; Liu, X.; and Izzo, A. A.; Trends in use, pharmacology, and clinical applications of emerging herbal nutraceuticals. Br. J. Pharmacol. 2020., 177(6),1227–1240.https://doi.org/10.1111/bph.14943
12. Moorthy, M.; Khoo, J. J.; Palanisamy, U. D.; Acute oral toxicity of the ellagitannin geraniin and a geraniin-enriched extract from Nephelium lappaceum L rind in Sprague Dawley rats. Heliyon. 2019, 5(8), e02333. https://doi.org/10.1016/j.heliyon.2019.e02333
13. Tamburlin, I. S.; Roux, E.; Feuillée, M.; Labbe, J.; Aussagues, Y.; El Fadle, F. E.; Bouvier, G.; Toxicological safety assessment of essential oils used as food supplements to establish safe oral recommended doses. Food. Chem. Toxicol. 2021, 157, 112603.https://doi.org/10.1016/j.fct.2021.112603
14. Kuralkar, P.; Kuralkar, S. V.; Role of herbal products in animal production–An updated review. J. Ethnopharmacol. 2021, 278, 114246.https://doi.org/10.1016/j.jep.2021.114246
15. Madhumita, M.; Guha, P.; Nag, A.; Bio‐actives of betel leaf (Piper betle L.): A comprehensive review on extraction, isolation, characterisation, and biological activity. Phytother. Res. 2020, 34(10), 2609-2627.https://doi.org/10.1002/ptr.6715
16. Singh, D.; Narayanamoorthy, S.; Gamre, S.; Majumdar, A.G.; Goswami, M.; Gami, U.; Cherian, S. and Subramanian, M., Hydroxychavicol, a key ingredient of Piper betle induces bacterial cell death by DNA damage and inhibition of cell division. Free Radic. Biol. Med. 2018, 120,62–71. https://doi.org/10.1016/j.freeradbiomed.2018.03.021
17. Basit, M. A.; Arifah, A. K.; Chwen, L. T.; Salleh, A.; Kaka, U.; Idris, S. B.; Farooq, A. A.; Javid, M. A.; Murtaza, S.; Qualitative and quantitative phytochemical analysis, antioxidant activity and antimicrobial potential of selected herbs Piper betle and Persicaria odorata leaf extracts. Asian J. Agric. Biol. 2023, (3), 1-13.DOI: https://doi.org/10.35495/ajab.2023.038
18. Das, S.; Sandeep, I. S.; Mohapatra, P.; Kar, B.; Sahoo, R. K.; Subudhi, E.; Nayak, S.; Mohanty, S.; A comparative study of essential oil profile, antibacterial and antioxidant activities of thirty Piper betle landraces towards selection of industrially important chemotypes. Ind. Crops Prod. 2022, 187: 115289.https://doi.org/10.1016/j.indcrop.2022.115289
19. Syahidah, A.; Saad, C. R.; Hassan, M. D.; Rukayadi, Y.; Norazian, M. H.; Kamarudin, M. S.; Phytochemical Analysis , Identification and Quantification of Antibacterial Active Compounds in Betel Leaves , Piper betle Methanolic Extract. Pakistan. J. Biol. Sci. 2017, 20(2),70–81.https://doi.org/10.3923/pjbs.2017.70.81
20. Vo, X. T.; Nguyen, T.; Effects of green extraction solvents on phenolic contents and bioactivities of Persicaria odorata (Lour.) Sojak. Egypt. J. Chem. 2023, 66(12), 313-319.DOI: 10.21608/ejchem.2023.187525.7454
21. Khuayjarernpanishk, T.; Sookying, S.; Duangjai, A.; Saokaew, S.; Sanbua, A.; Bunteong, O.; Rungruangsri, N.; Suepsai, W.; Sodsai, P.; Soylaiad, J.; Nacharoen, V.; Anticancer Activities of Polygonum odoratum Lour.: A Systematic Review. Front. Pharmacol. 2022, 13, 875016.https://doi.org/10.3389/fphar.2022.875016
22. Christapher, P. V.; Parasuraman, S.; Vasanth Raj, P.; Saghir, S. A. M.; Asmawi, M. Z.; Vikneswaran, M.; Influence of extracting solvent on pharmacological activity and cytotoxicity of Polygonum minus, a commonly consumed herb in Southeast Asia. Pharmacogn Mag. 2016, 12(47), S424-S430. https://doi.org/10.4103/0973-1296.191451
23. Imelda, F.; Faridah, D. N.; Kusumaningrum, H. D.; Bacterial inhibition and cell leakage by extract of Polygonum minus Huds. leaves. Int. Food. Res. J. 2014, 21(2),553–560.
24. Christapher, P.; Parasuraman, S.; Christina, J. A.; Vikneswaran, M.; Asmawi, M. Z.; Review on Polygonum minus . Huds, a commonly used food additive in Southeast Asia. Pharmacognosy. Res. 2015, 7(1), 1–6. https://doi.org/10.4103/0974-8490.147125
25. Nguyen, V. T.; Nguyen, M. T.; Nguyen, N. Q.; Truc, T. T.; Phytochemical screening, antioxidant activities, total phenolics and flavonoids content of leaves from Persicaria odorata polygonaceae. In IOP Conference Series: Materials Science and Engineering. 2020, Dec 1 (Vol. 991, No. 1, p. 012029). IOP Publishing.DOI 10.1088/1757-899X/991/1/012029
26. Hassan, S. M.; Khalaf, M. M.; Sadek, S. A.; Abo-Youssef, A. M.; Protective effects of apigenin and myricetin against cisplatin-induced nephrotoxicity in mice. Pharm. Biol. 2017, 55(1), 766–774. https://doi.org/10.1080/13880209.2016.1275704
27. Aprianti, W.; Widiyatno, T. V.; Sudjarwo, S. A.; Effect of Polygonum Minus (Knotweed) Leaves Extract on the Histopathological Changes of Kidney in Mice (Mus Musculus) Induced by Mercuric Chloride. KnE Life Sci. 2017, 3(6), 753.https://doi.org/10.18502/kls.v3i6.1206
28. Christapher, P. V.; Parasuraman, S.; Asmawi, M. Z.; Murugaiyah, V.; Acute and subchronic toxicity studies of methanol extract of Polygonum minus leaves in Sprague Dawley rats. Regul. Toxicol. Pharmacol. 2017, 86, 33–41.https://doi.org/10.1016/j.yrtph.2017.02.005
29. Anokwuru, C.; Anyasor, G. N.; Olusola, A.; Effect of Extraction Solvents on Phenolic , Flavonoid and Antioxidant activities of Three Nigerian Medicinal Plants. Nat. Sci. Sleep. 2011, 9(7), 53-61.
30. Vitalini, S.; Madeo, M.; Tava, A.; Iriti, M.; Vallone, L.; Avato, P.; Cocuzza, C.E.; Simonetti, P.; Argentieri, M. P.; Chemical profile, antioxidant and antibacterial activities of Achillea moschata Wulfen, an endemic species from the Alps. Molecules. 2016, 21(7), 830.https://doi.org/10.3390/molecules21070830
31. Ali, A.; Lim, X. Y.; Chong, C. H.; Mah, S. H.; Chua, B. L.; Optimisation of ultrasound-assisted extraction of natural antioxidants from Piper betle using response surface methodology. LWT LWT-Food. Sci. Technol. 2018, 89, 681–688.https://doi.org/10.1016/j.lwt.2017.11.033
32. Khan, N.; Choi, J.Y.; Nho, E.Y.; Jamila, N.; Habte, G.; Hong, J.H.; Hwang, I.M.; Kim, K. S.; Determination of minor and trace elements in aromatic spices by micro-wave assisted digestion and inductively coupled plasma-mass spectrometry. Food. Chem. 2014, 158, 200–206.https://doi.org/10.1016/j.foodchem.2014.02.103
33. Sanghavi, N.; Bhosale, S. D.; Malode, Y.; RP-HPLC method development and validation of quercetin isolated from the plant Tridax procumbens L. J. Sci. Innov. Res. 2014, 3(6),594–597.Retrieved from www.jsirjournal.com
34. OECD.; Test No. 223: Avian Acute Oral Toxicity Test. OECD Publishing. 2010,https: //doi.org/10.1787/9789264090897-en
35. Basit, M. A.; Arifah, A. K.; Loh, T. C.; Saleha, A. A.; Salleh, A.; Kaka, U.; and Idris, S. B.; Effects of inclusion of different doses of Persicaria odorata leaf meal (POLM) in broiler chicken feed on biochemical and haematological blood indicators and liver histomorphological changes. Animals. 2020b, 10(7), 1209.https://doi.org/10.3390/ani10071209
36. NRC.; Nutrient Requirements of Poultry.9th Revised Edition. 1994, The National Academies Press, Washington, D. C, USA. 1994
37. Hashemi, S. R.; Zulkifli, I.; Bejo, M. H.; Farida, A.; Somchit, M. N.; Acute toxicity study and phytochemical screening of selected herbal aqueous extract in broiler chickens. Int. J. Pharmacol. 2008, 4(5),352–360. https://doi.org/10.3923/ijp.2008.352.360
38. Renu, S.; Jakhar, K. K.; Deepika, L.; Vikas, N.; Adya, P.; Clinico-pathological studies of thiacloprid toxicity in broiler chickens. Haryana Veterinarian. 2017, 56(2),204–206.https://www.luvas.edu.in/.../20.pdf
39. Department of Standards Malaysia. Halal Food-Production, Preparation, Handling and Storage-General Guideline; Department of Standards Malaysia: Cyberjaya, Malaysia, 2009, pp. 1–26. Available online:www.jsm.gov.my (accessed on 19 June 2020).
40. Basit, M. A.; Arifah, A. K.; Loh, T. C.; Saleha, A. A.; Salleh, A.; Kaka, U.; and Idris, S. B.; Effects of graded dose dietary supplementation of Piper betle leaf meal and Persicaria odorata leaf meal on growth performance, apparent ileal digestibility, and gut morphology in broilers. Saudi J. Biol. Sci. 2020a, 27(6), 1503–1513.https://doi.org/10.1016/j.sjbs.2020.04.017
41. SAS (2012).; User's Guide, 9.4 ed.; SAS Institute, Inc.: Cary, NC, USA, 2012.
42. Jongrungraungchok, S.; Madaka, F.; Wunnakup, T.; Sudsai, T.; Pongphaew, C.; Songsak, T.; Pradubyat, N.; In vitro antioxidant, anti-inflammatory, and anticancer activities of mixture Thai medicinal plants. BMC Complement. Med. Therap. 2023, 23: 43.https://doi.org/10.1186/s12906-023-03862-8
43. Requena, R.; Vargas, M.; Chiralt, A.; Eugenol and carvacrol migration from PHBV films and antibacterial action in different food matrices. Food chem. 2019, 277,38-45.https://doi.org/10.1016/j.foodchem.2018.10.093
44. Tran, V. T.; Nguyen, T. B.; Nguyen, H. C.; Do, N. H.; Le, P. K.; Recent applications of natural bioactive compounds from Piper betle (L.) leaves in food preservation. Food Control. 2023, 110026.https://doi.org/10.1016/j.foodcont.2023.110026
45. Foo, S. C.; Yusoff, F. M.; Ismail, M.; Basri, M.; Khong, N. M. H.; Chan, K. W.; Yau, S. K.; Efficient solvent extraction of antioxidant-rich extract from a tropical diatom, Chaetoceros calcitrans (Paulsen) Takano 1968. Asian. Pac. J. Trop. Med. 2015, 5(10), 834-840.https://doi.org/10.1016/j.algal.2015.08.004
46. Begam, K. M. F.; Ravichandran, P.; Manimekalai, V.; Phytochemical analysis of some selected varieties of Piper betle L. Int. J. Curr. Pharm. Res. 2018, 10(2), 89-93.
47. Jalil. V.; Khan. M.; Haider SZ, Shamim S.; Investigation of the Antibacterial, Anti-Biofilm, and Antioxidative Effect of Piper betle Leaf Extract against Bacillus gaemokensisMW067143 Isolated from dental Caries, an In Vitro-In Silico approach. Microorganisms. 2022, 10(12), 2485.https://doi.org/10.3390/microorganisms10122485
48. Gupta, R. K.; Guha, P.; Srivastav, P. P.; Phytochemical and biological studies of betel leaf (Piper betle L.): Review on paradigm and its potential benefits in human health. Acta Ecologica Sinic, 2023, 43(5), 721-732.
49. Ridzuan, P. M.; Hamzah, H. A.; Shah, A.; Hassan, N. M.; Roesnita, B.; Synergistic effects of Persicaria odorata (Daun Kesom) leaf extracts with standard antibiotics on pathogenic bacteria. Int. Med. J. Malaysia. 2017, 16(2),27–32.
50. Narasimhulu, G.; Mohamed, J.; Medicinal phytochemical and pharmacological properties of Kesum (Polygonum minus Linn.): A mini review. Int. J. Pharm. Pharm. Sci. 2014, 6(4), 682-688.
51. Azmi, N.; Zulkurnain, E.I.; Ramli, S.; James, R.J.; Halim, H.; The Phytochemical and Pharmacological Properties of Persicaria odorata: A Review. J. Pharm. Res. Int. 2021, 33 (41B), 262-279.Doi10.9734/jpri/2021/v33i41B32366
52. Kiraman, N. A. S.; Yusof, H.; Phytochemicals and biological activities of Persicaria odorata (Lour.): A mini review. Healthscope: The Official Research Book of Faculty of Health Sciences, UiTM, 2022, 5(2), 38-44.
[Google Scholar]
53. Chansiw, N.; Chotinantakul, K.; Srichairatanakool, S.; Anti-inflammatory and Antioxidant Activities of the Extracts from Leaves and Stems of Polygonum odoratum Lour. Anti-inflamm. Antiallergy Agents Med. Chem. 2019, 18(1), 45-54.https://doi.org/10.2174/1871523017666181109144548
54. Shrinet, K.; Singh, R. K.; Chaurasia, A. K.; Tripathi, A.; Kumar, A.; Bioactive compounds and their future therapeutic applications. In Natural Bioactive Compounds. 2021, Academic Press. pp. 337-362.https://doi.org/10.1016/B978-0-12-820655-3.00017-3
55. Ali, K.; Ali, A.; Khan, M.N.; Rahman, S.; Faizi, S.; Ali, M.S.; Khalifa, S.A.; El-Seedi, H.R.; and Musharraf, S.G.; Rapid identification of common secondary metabolites of medicinal herbs using high-performance liquid chromatography with evaporative light scattering detector in extracts. Metabolites. 2021, 11(8), 489.
56. Purba, R. A. P.; Paengkoum, P.; Bioanalytical HPLC method of Piper betle L. for quantifying phenolic compound, water-soluble vitamin, and essential oil in five different solvent extracts. J. Appl. Pharm. Sci. 2019, 9(5), 033-039.DOI: 10.7324/JAPS.2019.90504
57. Mahajan, M.; Kuiry, R.; Pal, P. K.; Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. J. Appl. Res. Med. Aromat. Plants. 2020, 18, 100255.https://doi.org/10.1016/j.jarmap.2020.100255
58. Muntean, E.; Michalski, R.; Muntean, N.; Duda, M.; Chemical risk due to heavy metal contamination of medicinal plants. Hop. Med. Plants. 2016, 1(2),71–78.
59. Yaashikaa, P. R.; Kumar, P. S.; Jeevanantham, S.; Saravanan, R.; A review on bioremediation approach for heavy metal detoxification and accumulation in plants. Environ. Pollut. 2022, 301, 119035.https://doi.org/10.1016/j.envpol.2022.119035
60. Teff, K. L.; Kim, S. F.; Atypical antipsychotics and the neural regulation of food intake and peripheral metabolism. Physiol. Behav. 2011, 104(4),590–598.https://doi.org/10.1016/j.physbeh.2011.05.033
61. Alelign, T.; Chalchisa, D.; Fekadu, N.; Solomon, D.; Sisay, T.; Debella, A.; Petros, B.; Evaluation of acute and sub-acute toxicity of selected traditional antiurolithiatic medicinal plant extracts in Wistar albino rats. Toxicol. Rep. 2020, 7, 1356-1365.https://doi.org/10.1016/j.toxrep.2020.10.001
62. Thrall, M.; Weiser, G.; Allison, R.; Campbell, T.; Veterinary hematology and clinical chemistry. Retrieved from. 2012,https://books.google.com/books?hl=en&lr=&id=PjCanfyADvIC&oi=fnd&pg=PT24&ots=kcP7c13HEZ&sig=q0miBNEUfrbSWbVBxESLnTBPkLM
63. Liu, J.; Mao, Y.; Eugenol attenuates concanavalin A-induced hepatitis through modulation of cytokine levels and inhibition of mitochondrial oxidative stress. Arch. Biol. Sci. 2019, 71(2),339-346.https://doi.org/10.2298/ABS190121016L
64. Dinardo, F. R.; Maggiolino, A.; Casalino, E.; Deflorio, M.; Centoducati, G.; A multi-biomarker approach in European sea bass exposed to dynamic temperature changes under dietary supplementation with origanum vulgare essential oil. Animals. 2021, 11(4), 982.https://doi.org/10.3390/ani11040982
65. Akkara, P. J.; & Sabina, E. P.; Xenobiotic hepatotoxicity. Res. J. Biotechnol. 2019, Vol, 14, 5.[Google Scholar]
66. Gupta, P. K.; Gupta, P. K.; Target Organ Toxicity. Problem Solving Questions in Toxicology: A Study Guide for the Board and other Examinations. 2020, 83-117. [Google Scholar]
67. Cornelius C. E.; Liver function tests in the differential diagnosis of hepatotoxicity. In Hepato-toxicology. 2020, Jan 16 (pp. 181-213). CRC Press. [Google Scholar]
68. Kobayashi, A.; Suzuki, Y.; Sugai, S.; Specificity of transaminase activities in the prediction of drug-induced hepatotoxicity. J. Toxicol. Sci. 2020, 45(9), 515-537.https://doi.org/10.2131/jts.45.515
69. Alhidary, I. A.; Abdelrahman, M. M.; Uallh Khan, R.; Harron, R. M.; Antioxidant status and immune responses of growing camels supplemented a long-acting multi-trace minerals rumen bolus. Ital. J. Anim. Sci. 2016, 15(2), 343–349.https://doi.org/10.1080/1828051X.2016.1186502
70. Weber, S.; Gerbes, A.L.; Challenges and Future of Drug-Induced Liver Injury Research-Laboratory Tests. Int. J. Mol. Sci. 2022; 23(11):6049.https://doi.org/10.3390/ijms23116049
71. Karak, S.; Das, S.; Biswas, M.; Choudhury, A.; Dutta, M.; Chaudhury, K.; De, B.; Phytochemical composition, β-glucuronidase inhibition, and antioxidant properties of two fractions of Piper betle leaf aqueous extract. J. Food. Biochem. 2019, 43(12),1–12.https://doi.org/10.1111/jfbc.13048
72. Autade, K. A.; Kolhe, G. D.; Gaikwad, H. V.; Najan, A. K.; Evalution of hepatoprotective effects of aqueous extract of Piper betel. J. Pharmacogn. Phytochem. 2023, 12(1), 566-572. [Google Scholar]
73. Lister, I.N.E.; Ginting, C.N.; Girsang, E.; Amansyah, A.; Chiuman, L.; Yanti, N.L.W.E.; Rizal, R hiuman, L.; Yanti, N. L. W. E.; Widowati, W.; Hepatoprotective effect of eugenol on acetaminophen-induced hepatotoxicity in HepG2 cells. In Journal of Physics: Conference Series (Vol. 1374, No. 1, p. 012009). IOP Publishing.
74. Biswas, P.; Anand, U.; Saha, S. C.; Kant, N.; Mishra, T.; Masih, H.; Dey, A.; Betelvine (Piper betle L.): A comprehensive insight into its ethnopharmacology, phytochemistry, and pharmacological, biomedical and therapeutic attributes. J. Cell. Mol. Med. 2022, 26(11), 3083-3119.https://doi.org/10.1111/jcmm.17323
75. Somparn, N.; Saenthaweeuk, S.; Naowaboot, J.; Thaeomor, A.; Kukongviriyapan, V.; Effect of lemongrass water extract supplementation on atherogenic index and antioxidant status in rats. Acta. Pharm. 2018, 68(2),185–197. https://doi.org/10.2478/acph-2018-0015
76. Keller U.; Nutritional Laboratory Markers in Malnutrition. J. Clin. Med. 2019, 8(6):775.https: //doi.org/10.3390/jcm8060775
77. He, J.; Dong, L.; Xu, W.; Bai, K.; Lu, C.; Wu, Y.; Huang, Q.; Zhang, L.; Wang, T.; Dietary tributyrin supplementation attenuates insulin resistance and abnormal lipid metabolism in suckling piglets with intrauterine growth retardation. PLoS One. 2015, 10(8),1–14.https: //doi.org/10.1371/journal.pone.0136848
78. Popoola, I. O.; Popoola, O. R.; Adeyemi, A. A.; Ojeniyi, O. M.; Olaleru, I. F.; Oluwadele, F. J.; Akinwumi, E. O.; Overall performance, carcass yield, meat safety potentials and economic value of heat-stressed broilers fed diets with balanced electrolytes. Food. Sci. Nutr. 2020, 11, 615-628.https://doi.org/10.4236/fns.2020.117044.
79. Griffin, B. R.; Faubel, S.; Edelstein, C. L.; Biomarkers of drug-induced kidney toxicity. Ther. Drug. Monit. 2019, 41(2), 213.doi: 10.1097/FTD.0000000000000589
80. Zsom, L.; Zsom, M.; Salim, S. A.; Fülöp. T.; Estimated Glomerular Filtration Rate in Chronic Kidney Disease: A Critical Review of Estimate-Based Predictions of Individual Outcomes in Kidney Disease. Toxins. 2022, 14(2):127.https://doi.org/10.3390/toxins14020127
81. Yang, H.; Song, Y.; Liang, Y. N.; and Li, R.; Quercetin treatment improves renal function and protects the kidney in a rat model of adenine-induced chronic kidney disease. Med. Sci. Monit. 2018, 24,4760–4766.
82. Saifullah.; Nadia.; Rehan A. S.; Zahida M.; Moazzam A. S.; Talat. M.: Eugenol Ameliorates Rhabdomyolysis-Induced Acute Kidney Injury in Mice. Pak. J. Med. Dent. 2019, 8(03),25-29.
83. Kadir, A.; Sher, S.; Siddiqui, R. A.; Mirza, T.; Nephroprotective role of eugenol against cisplatin-induced acute kidney injury in mice. Pak. J. Pharm. Sci. 2020, 33(3), 1281–1287.https://doi.org/doi.org/10.36721/PJPS.2020.33.3.SUP.1281-1287.1
84. Sharma, U. K.; Kumar, R.; Gupta, A.; Ganguly, R.; Singh, A. K.; Ojha, A. K.; and Pandey, A. K.; Ameliorating efficacy of eugenol against metanil yellow induced toxicity in albino Wistar rats. Food. Chem. Toxicol. 2019, 126,34–40.https://doi.org/10.1016/j.fct.2019.01.032
85. Lu, H.; Wu, L.; Liu, L.; Ruan, Q.; Zhang, X.; Hong, W.; Wu, S.; Jin, G.; Bai, Y.; Quercetin ameliorates kidney injury and fibrosis by modulating M1/M2 macrophage polarization. Biochem. Pharmacol. 2018, 154,203–212.https://doi.org/10.1016/j.bcp.2018.05.007
86. Ayodele, S. O.; Oloruntola, O. D.; Agbede, J. O.; Effect of alchornea cordifolia leaf meal inclusion and enzyme supplementation on performance and digestibility of rabbits. World Rabbit Sci. 2016, 24(3),201–206.https://doi.org/10.4995/wrs.2016.3933

Most read articles by the same author(s)