ANTIBIOTIC RESISTANCE TO UTI MEDICINE: LONG-TERM FOLLOW-UP REPORT

Main Article Content

Sama Khaliq
Umar Akhter
Sidra Mushtaq
Nadeem Yaqoob
Rao Salman Aziz
Shoaib Ahmed

Keywords

Antibiotic resistance, urinary tract infections, children

Abstract

Paediatric UTIs are among the most frequent illnesses. This discussion's context and goal are below. The arbitrary use of antibiotics has increased the number of antibiotic-resistant germs and disseminated them to other illnesses. In children aged nine who were diagnosed with urinary tract infections and referred to the hospital, this study examined resistance progression.


Place of study: Children’s Hospital, Lahore


Study Design: Cross-sectional study


Materials and Methods: This cross-sectional study examined all children diagnosed with urinary tract infections between 2021 and 2023. Reviewing patient healthcare records yielded 1.5 years of data. The patient's age, gender, antibiotic resistance profile, urine culture results, and UTI history were included. Clinical and microbiological criteria were considered for case selection.


Result: The study found that E. coli was the most prevalent bacterium in urine samples. The high antibiotic resistance rates for Cefixime (72.7%) and Ceftriaxone (67.4%) make treating paediatric UTIs, especially E. coli-caused ones, problematic. Further susceptibility studies showed that Amoxicillin (94.2%) and Cephalexin, Trimethoprim/Sulfamethoxazole (93.3%) were the most susceptible antibiotics, suggesting they could treat paediatric UTIs. Resistance patterns over 1.5 years demonstrated sensitivity and rate variations.  Males and females displayed different resistance patterns to Amoxicillin, Cephalexin, Co-trimoxazole (Trimethoprim/Sulfamethoxazole), and Nitrofurantoin, according to statistical analysis. This difference was substantial (P>0.05).


Conclusion: According to the study, 94.2% of the strains tested respond to Amoxicillin, making it a suitable treatment. Antimicrobial stewardship strategies and drug resistance monitoring may prevent urinary tract infection (UTI) mistreatment.

Abstract 58 | pdf Downloads 18

References

. Alekshun MN, Levy SB. Molecular mechanisms of antibacterial multidrug resistance. Cell. 2007; 128(6):1037-50. [DOI:10.1016/j.cell.2007.03.004] [PMID]
2. Shaikh S, Fatima J, Shakil S, Rizvi SM, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J Biol Sci. 2015;22(1):90-101. [DOI:10.1016/j.sjbs.2014.08.002] [PMID] [PMCID]
3. Ibrahimagić A, Bedenić B, Kamberović F, Uzunović S. High prevalence of CTX-M-15 and first report of CTX-M-3, CTX-M-22, CTX-M-28 and plasmidmediated AmpC beta-lactamase producing Enterobacteriaceae causing urinary tract infections in Bosnia and Herzegovina in hospital and community settings. J Infect Chemother. 2015;21(5):363-9. [DOI:10.1016/j.jiac.2015.01.003] [PMID]
4. Yang X, Chen H, Zheng Y, Qu S, Wang H, Yi F. Disease burden and long-term trends of urinary tract infections: A worldwide report. Front Public Health. 2022;10:888205. [PMID] [PMCID] [DOI:10.3389/fpubh.2022.888205]
5. Fatima S, Akbar A, Irfan M, Shafee M, Ali A, Ishaq Z, et al. Virulence Factors and Antimicrobial Resistance of Uropathogenic Escherichia coli EQ101 UPEC Isolated from UTI Patient in Quetta, Balochistan, Pakistan. Biomed Res Int. 2023;2023: 7278070. [DOI:10.1155/2023/7278070] [PMID] [PMCID]
6. Yang Q, Zhang H, Wang Y, Xu Z, Zhang G, Chen X, et al. Antimicrobial susceptibilities of aerobic and facultative gram-negative bacilli isolated from Chinese patients with urinary tract infections between 2010 and 2014. BMC Infect Dis. 2017; 17(1):192. [DOI:10.1186/s12879-017-2296-x] [PMID] [PMCID]
7. Zhang H, Kong H, Yu Y, Wu A, Duan Q, Jiang X, et al. Carbapenem susceptibilities of Gram-negative pathogens in intra-abdominal and urinary tract infections: updated report of SMART 2015 in China. BMC Infect Dis. 2018;18:493. [PMID] [DOI:10.1186/s12879-018-3405-1] [PMCID]
8. Pitout JD. Extraintestinal pathogenic Escherichia coli: a combination of virulence with antibiotic resistance. Front Microbiol. 2012;3:9. [DOI:10.3389/fmicb.2012.00009] [PMID] [PMCID]
9. Rushton HG. Urinary tract infections in children: epidemiology, evaluation, and management. Pediatr Clin North Am. 1997;44(5):1133-69. [DOI:10.1016/S0031-3955(05)70551-4] [PMID]
10. Sageerabanoo S, Malini A, Mangaiyarkarasi T, Hemalatha G. Phenotypic detection of extended spectrum β-lactamase and Amp-C β-lactamase producing clinical isolates in a Tertiary Care Hospital: A preliminary study. J Nat Sci Biol Med. 2015;6(2):383-7. [PMID] [PMCID] [DOI:10.4103/0976-9668.160014]
11. Performance Standards for Antimicrobial Susceptibility Testing. M100, 30th ed. January 2020. Available online: [https://www.nih.org.pk/wpcontent/uploads/2021/02/CLSI-2020.pdf]
12. Edelstein M, Pimkin M, Palagin I, Edelstein I, Stratchounski L. Prevalence and molecular epidemiology of CTX-M extended-spectrum βlactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob Agents Chemother. 2003;47(12): 3724-32. [PMID] [PMCID] [DOI:10.1128/AAC.47.12.3724-3732.2003]
13. Rehman N, Azam S, Ali A, Asghar M, Ali M, Waqas M, et al. Molecular epidemiology of antibioticresistant genes and potent inhibitors against TEM, CTX-M-14, CTX-M-15, and SHV-1 proteins of Escherichia coli in district Peshawar, Pakistan. Saudi J Biol Sci. 2021;28(11):6568-81. [DOI:10.1016/j.sjbs.2021.07.028] [PMID] [PMCID]
14. Mendonça N, Leitao J, Manageiro V, Ferreira E, Canica M. Spread of extended-spectrum βlactamase CTX-M-producing Escherichia coli clinical isolates in community and nosocomial environments in Portugal. Antimicrob Agents Chemother. 2007;51(6):1946-55. [DOI:10.1128/AAC.01412-06] [PMID] [PMCID]
15. Clermont O, Dhanji H, Upton M, Gibreel T, Fox A, Boyd D, et al. Rapid detection of the O25b-ST131 clone of Escherichia coli encompassing the CTXM-15-producing strains. J Antimicrob Chemother. 2009;64(2):274-7. [DOI:10.1093/jac/dkp194] [PMID]
16. Johnson JR, Clermont O, Johnston B, Clabots C, Tchesnokova V, Sokurenko E, et al. Rapid and specific detection, molecular epidemiology, and experimental virulence of the O16 subgroup within Escherichia coli sequence type 131. J Clin Microbiol. 2014; 52(5):1358-65. [DOI:10.1128/JCM.03502-13] [PMID] [PMCID]
17. Colpan A, Johnston B, Porter S, Clabots C, Anway R, Thao L, et al. Escherichia coli sequence type 131 (ST131) subclone H 30 as an emergent multidrugresistant pathogen among US veterans. Clin Infect Dis. 2013;57(9):1256-65. [DOI:10.1093/cid/cit503] [PMID] [PMCID]
18. Banerjee R, Robicsek A, Kuskowski MA, Porter S, Johnston BD, Sokurenko E, et al. Molecular epidemiology of Escherichia coli sequence type 131 and its H30 and H30-Rx subclones among extended-spectrum-β-lactamase-positive andnegative E. coli clinical isolates from the Chicago region, 2007 to 2010. Antimicrob Agents Chemother. 2013;57(12):6385-8. [DOI:10.1128/AAC.01604-13] [PMID] [PMCID]
19. Tartof SY, Solberg OD, Manges AR, Riley LW. Analysis of an uropathogenic Escherichia coli clonal group by multilocus sequence typing. J Clin Microbiol. 2005;43(12):5860-4. [PMID] [PMCID] [DOI:10.1128/JCM.43.12.5860-5864.2005]
20. Negeri AA, Mamo H, Gurung JM, Firoj Mahmud AK, Fällman M, Seyoum ET, et al. Antimicrobial resistance profiling and molecular epidemiological analysis of extended spectrum βlactamases produced by extraintestinal invasive Escherichia coli isolates from Ethiopia: the presence of international high-risk clones ST131

Most read articles by the same author(s)