OPTIMIZATION AND CHARACTERIZATION OF AZELAIC ACID NANOEMULSION FOR ENHANCED TOPICAL DELIVERY: A POTENTIAL THERAPEUTIC APPROACH FOR SKIN HYPERPIGMENTATION DISORDERS

Main Article Content

Rahisuddin
Nasiruddin Ahmad Farooqui
Dinesh Kumar Sharma

Keywords

Abstract

This research focuses on the development and characterization of an Azelaic Acid nanoemulsion for improved topical delivery, targeting skin hyperpigmentation disorders. Using rapid connectivity homogenization and ultra-probe sonication, the nanoemulsion was optimized through Response Surface Methodology. Characterization involved various parameters, confirming successful encapsulation of Azelaic Acid. The optimized formulation exhibited favorable properties, including small globule size, high entrapment efficiency, and sustained release. Stability tests and ex-vivo permeation studies further supported its potential as a promising platform for treating skin hyperpigmentation disorders. Further research, including in vivo studies, is warranted for comprehensive efficacy and safety evaluation.

Abstract 20 | Pdf Downloads 14

References

1. Al-Edresi S, Baie S. In-vitro and in-vivo evaluation of a photo-protective kojic dipalmitate loaded into nano-creams. Asian J Pharm Sci. 2010;5(6):251-65.
2. Costa LC, Louchard BO, Neto EM, da Silva Giffony P, Campos FM, de Araujo TG. Development and Characterization of Azelaic Acid and Carnaúba Wax-Based Solid Lipid Microparticles. Journal of Young Pharmacists. 2020;12(4):309.
3. Lajis AF, Hamid M, Ahmad S, Ariff AB. Lipase-catalyzed synthesis of Azelaic Acid derivative in bioreactors and the analysis of its depigmenting and antioxidant activities. Cosmetics. 2017 Jul 4;4(3):22.
4. Kobayashi Y, Azelaic Acid yahara H, Tadasa K, NaAzelaic Acid mura T, TanaAzelaic Acid H. Synthesis of amino acid derivatives of Azelaic Acid and their tyrosinase inhibitory activity. Bioscience, biotechnology, and biochemistry. 1995 Jan 1;59(9):1745-6.
5. Norddin FA, Azhar SN, Ashari SE. Evaluation of direct esterification of fatty acid derivative of Azelaic Acid in co-solvent system: A statistical approach. J. Biosens. Bioelectron. 2017;8:331.
6. Xie W, Zhang J, Ma X, Yang W, Zhou Y, Tang X, Zou Y, Li H, He J, Xie S, Zhao Y. Synthesis and biological evaluation of Azelaic Acid derivatives containing 1, 2, 4‐triazole as potent tyrosinase inhibitors. Chemical Biology & Drug Design. 2015 Nov;86(5):1087-92.
7. Noh JM, Kwak SY, Seo HS, Seo JH, Kim BG, Lee YS. Kojic acid–amino acid conjugates as tyrosinase inhibitors. Bioorganic & medicinal chemistry letters. 2009 Oct 1;19(19):5586-9.
8. Noh JM, Kwak SY, Kim DH, Lee YS. Kojic acid–tripeptide amide as a new tyrosinase inhibitor. Peptide Science: Original Research on Biomolecules. 2007;88(2):300-7.
9. Lee M, Park HY, Jung KH, Kim DH, Rho HS, Choi K. Anti-melanogenic effects of Azelaic Acid and hydroxycinnamic acid derivatives. Biotechnology and bioprocess engineering. 2020 Apr;25:190-6.
10. Lee YS, Park JH, Kim MH, Seo SH, Kim HJ. Synthesis of tyrosinase inhibitory Azelaic Acid derivative. Archiv der Pharmazie: An International Journal Pharmaceutical and Medicinal Chemistry. 2006 Mar;339(3):111-4.
11. Burnett CL, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Andersen FA. Final report of the safety assessment of Azelaic Acid as used in cosmetics. International journal of toxicology. 2010 Nov;29(6_suppl):244S-73S.
12. Abdulbaqi MR, Rajab NA. Apixaban ultrafine O/W nano emulsion transdermal drug delivery system: formulation, in vitro and ex vivo characterization. Syst. Rev. Pharm. 2020 Feb 1;11:82- 94.
13. O’Neil MJ, Smith A, Heckleman PE, Obenchain Jr JR, Gallipeau JR, D’Arecca MA. Merck Index—14th Ed. Whitehouse Station, NJ: Merck and Co.2006:920.
14. Lewis RA. Hawley's condensed chemical dictionary. John Wiley & Sons; 2016 May 31.
15. Yang Y, Engkvist O, Llinàs A, Chen H. Beyond size, ionization state, and lipophilicity:
influence of molecular topology on absorption, distribution, metabolism, excretion, and toxicity for druglike compounds. Journal of medicinal chemistry. 2012 Apr 26;55(8):3667-77.
16. Gonçalez ML, Correa MA, Chorilli M. Skin delivery of kojic acid-loaded nanotechnology- based drug delivery systems for the treatment of skin aging. BioMed Research International. 2013 Jan 1;2013.
17. Choi SY, Kim S, Kim H, Suk K, Hwang JS, Lee BG, Kim AJ, Kim SY. (4-Methoxy- benzylidene)-(3-methoxy-phenyl)-amine, a nitrogen analog of stilbene as a potent inhibitor of melanin production. Chemical and pharmaceutical bulletin. 2002;50(4):450-2.
18. Kumar R, Soni GC, Prajapati SK. Formulation development and evaluation of Telmisartan Nanoemulsion. International Journal of Research and Development in Pharmacy & Life Sciences. 2017 Jul 15;6(4):2711-9.
19. Azelaic Acid songo WA, Pardeike J, Müller RH, Walker RB. Selection and characterization of suitable lipid excipients for use in the manufacture of didanosine-loaded solid lipid nanoparticles and nanostructured lipid carriers. Journal of pharmaceutical sciences. 2011 Dec 1;100(12):5185-96.
20. Khan BA, Waheed M, Hosny KM, Rizg WY, Murshid SS, Alharbi M, Khan MK. Formulation and Characterization of Carbopol-934 Based Kojic Acid-Loaded Smart Nanocrystals: A Solubility Enhancement Approach. Polymers. 2022 Apr 6;14(7):1489.
21. Gupta S, Pramanik AK, Azelaic Acid ilath A, Mishra T, Guha A, Nayar S, Sinha A. Composition dependent structural modulations in transparent poly (vinyl alcohol) hydrogels. Colloids and Surfaces B: Biointerfaces. 2009 Nov 1;74(1):186-90.
22. Gupta B, Agarwal R, Sarwar Alam M. Preparation and characterization of polyvinyl alcohol‐ polyethylene oxide‐carboxymethyl cellulose blend membranes. Journal of applied polymer science. 2013 Jan 15;127(2):1301-8.
23. Devangamath SS, Lobo B, Masti SP, Narasagoudr S. Thermal, mechanical, and AC electrical studies of PVA–PEG–Ag 2 S polymer hybrid material. Journal of Materials Science: Materials in Electronics. 2020 Feb;31:2904-17.
24. Bernal-Chávez SA, Alcalá-Alcalá S, Tapia-Guerrero YS, Magaña JJ, Del Prado-Audelo ML, Leyva-Gómez G. Cross-linked polyvinyl alcohol-xanthan gum hydrogel fabricated by freeze/thaw technique for potential application in soft tissue engineering. RSC advances. 2022;12(34):21713-24.
25. Raja PB, Munusamy KR, Perumal V, Ibrahim MN. Characterization of nanomaterial used in nanobioremediation. InNano-bioremediation: fundamentals and applications 2022 Jan 1 (pp. 5783). Elsevier.
26. Kumar R, Singh A, Sharma K, Dhasmana D, Garg N, Siril PF. Preparation, characterization and in vitro cytotoxicity of Fenofibrate and Nabumetone loaded solid lipid nanoparticles. Materials Science and Engineering: C. 2020 Jan 1;106:110184.
27. Khezri K, Saeedi M, Morteza-Semnani K, Akbari J, Hedayatizadeh-Omran A. A promising and effective platform for delivering hydrophilic depigmenting agents in the treatment of cutaneous hyperpigmentation: Azelaic Acid nanostructured lipid carrier. Artificial Cells, Nanomedicine, and Biotechnology. 2021 Jan 1;49(1):38-47.
28. Khan BA, Waheed M, Hosny KM, Rizg WY, Murshid SS, Alharbi M, Khan MK. Formulation and Characterization of Carbopol-934 Based Kojic Acid-Loaded Smart Nanocrystals: A Solubility Enhancement Approach. Polymers. 2022 Apr 6;14(7):1489
29. Aziz SB, Abdullah OG, Hussein SA, Ahmed HM. Effect of PVA blending on structural and ion transport properties of CS: AgNt-based polymer electrolyte membrane. Polymers. 2017 Nov 15;9(11):622.
30. Kurnool AN, Acharya A, Ramesh B. Approaches to modify the nature of xanthan gum and characterizations to improve its functionality. Journal of Pharmaceutical Sciences and Research. 2019;11(1):15-20.