A SYSTEMIC REVIEW ON SILVER NANOPARTICLES: CURRENT PROSPECTIVE AND QUALITY OPTIMIZATION APPROACHES AND APPLICATION

Main Article Content

Jiyaul Hak
Dinesh Kumar Sharma
Nasiruddin Ahmad Farooqui

Keywords

Silver Nanoparticles, Pharmacokinetic, and Pharmacodynamics, quality optimization approach, therapeutic application

Abstract

In recent years, nanoparticles of noble metals like gold, Palladium, and Silver have drawn immense attention due to the wide range of new applications in pharmaceutical fields as well as other industries. Silver nanoparticles are one of the most beneficial forms of metals in nanotechnology applications. Silver nanoparticles are used in a wide variety of products, including consumer goods, healthcare, catalysts, electronics, and analytical equipment. Silver has a lot of potential in a variety of biological/chemical applications, particularly in the form of nanoparticles (NPs). Silver nanoparticles have anti-inflammatory, anti-cancer, anti-viral, anti-bacterial, and wound-healing activity. The major focus of silver nanoparticles on anti-inflammatory anti-cancer and anti-bacterial capabilities in this review article. We also discuss the properties of AgNPs and methods for their characterization, pharmacokinetics, and pharmacodynamics. More importantly, we extensively discuss the multifunctional bio-applications of AgNPs; for example, as antibacterial, antifungal, antiviral, anti-inflammatory, anti-angiogenic, and anti-cancer agents, and the mechanism of the anti-cancer activity, anti-inflammatory activity and anti-bacterial activity of AgNPs. In addition, we discuss therapeutic approaches and challenges for cancer therapy using AgNPs. Finally, we conclude by discussing the future perspective of AgNPs.


The results show that, depending on a variety of circumstances, silver nanoparticles have varying degrees of anti-inflammatory anti-cancer and anti-bacterial impact. The usage of anti-inflammatory supplements serves as evidence that silver supplements are being used.

Abstract 47 | pdf Downloads 27

References

[1] S. Gurunathan, J. H. Park, J. W. Han, and J. H. Kim, “Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: Targeting p53 for anticancer therapy,” Int. J. Nanomedicine, 2015, doi: 10.2147/IJN.S83953.
[2] W. R. Li, X. B. Xie, Q. S. Shi, H. Y. Zeng, Y. S. Ou-Yang, and Y. Ben Chen, “Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli,” Appl. Microbiol. Biotechnol., 2010, doi: 10.1007/s00253-009-2159-5.
[3] W. R. Li, X. B. Xie, Q. S. Shi, S. S. Duan, Y. S. Ouyang, and Y. Ben Chen, “Antibacterial effect of silver nanoparticles on Staphylococcus aureus,” BioMetals, 2011, doi: 10.1007/s10534-010-9381-6.
[4] P. Mukherjee et al., “Fungus-Mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis,” Nano Lett., 2001, doi: 10.1021/nl0155274.
[5] S. Chernousova and M. Epple, “Silver as antibacterial agent: Ion, nanoparticle, and metal,” Angewandte Chemie - International Edition. 2013. doi: 10.1002/anie.201205923.
[6] R. Preety, R. Anitha, S. Rajeshkumar, and T. Lakshmi, “Anti-diabetic activity of silver nanoparticles prepared from cumin oil using alpha amylase inhibitory assay,” Int. J. Res. Pharm. Sci., 2020, doi: 10.26452/ijrps.v11i2.1978.
[7] Y. Cao et al., “sRNATarBase: A comprehensive database of bacterial sRNA targets verified by experiments,” RNA, 2010, doi: 10.1261/rna.2193110.
[8] W. Y. Huang, Y. M. Liu, J. Wang, X. N. Wang, and C. Y. Li, “Anti-inflammatory effect of the blueberry anthocyanins malvidin-3-glucoside and malvidin-3-galactoside in endothelial cells,” Molecules, 2014, doi: 10.3390/molecules190812827.
[9] I. Sondi and B. Salopek-Sondi, “Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria,” J. Colloid Interface Sci., 2004, doi: 10.1016/j.jcis.2004.02.012.
[10] M. F. Rahman et al., “Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles,” Toxicol. Lett., 2009, doi: 10.1016/j.toxlet.2009.01.020.
[11] S. Gurunathan et al., “Reduced graphene oxide-silver nanoparticle nanocomposite: A potential anticancer nanotherapy,” Int. J. Nanomedicine, 2015, doi: 10.2147/IJN.S92449.
[12] E. Stathatos, P. Lianos, P. Falaras, and A. Siokou, “Photocatalytically deposited silver nanoparticles on mesoporous TiO2 films,” Langmuir, 2000, doi: 10.1021/la981783t.
[13] S. V. Kyriacou, W. J. Brownlow, and X. H. N. Xu, “Using Nanoparticle Optics Assay for Direct Observation of the Function of Antimicrobial Agents in Single Live Bacterial Cells,” Biochemistry, 2004, doi: 10.1021/bi0351110.
[14] X. Feng et al., “Aqueous-organic phase-transfer of highly stable gold, silver, and platinum nanoparticles and new route for fabrication of gold nanofilms at the oil/water interface and on solid supports,” J. Phys. Chem. B, 2006, doi: 10.1021/jp0609885.
[15] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science (80-. )., 2001, doi: 10.1126/science.1062711.
[16] W. Zhang, X. Qiao, J. Chen, and H. Wang, “Preparation of silver nanoparticles in water-in-oil AOT reverse micelles,” J. Colloid Interface Sci., 2006, doi: 10.1016/j.jcis.2006.06.035.
[17] Y. K. Mohanta et al., “Silver nanoparticles synthesized using wild mushroom show potential antimicrobial activities against food borne pathogens,” Molecules, 2018, doi: 10.3390/molecules23030655.
[18] A. Thapliyal, R. K. Khar, and A. Chandra, “Artificial Neural Network Modelling of Green Synthesised Silver Nanoparticles in Bentonite/Starch Bio-Nanocomposite,” Curr. Nanosci., 2017, doi: 10.2174/1573413713666171103103141.
[19] K. Shameli et al., “Silver/poly (lactic acid) nanocomposites: Preparation, characterization, and antibacterial activity,” Int. J. Nanomedicine, 2010, doi: 10.2147/ijn.s12007.
[20] K. Thapliyal, R. D. Sharma, and A. Pathak, “Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment,” Int. J. Quantum Inf., 2018, doi: 10.1142/S0219749918500478.
[21] P. Shabanzadeh, R. Yusof, and K. Shameli, “Artificial neural network for modeling the size of silver nanoparticles’ prepared in montmorillonite/starch bionanocomposites,” J. Ind. Eng. Chem., 2015, doi: 10.1016/j.jiec.2014.09.007.
[22] M. Turkyilmazoglu, “Condensation of laminar film over curved vertical walls using single and two-phase nanofluid models,” Eur. J. Mech. B/Fluids, 2017, doi: 10.1016/j.euromechflu.2017.04.007.
[23] K. J. Kim, W. S. Sung, S. K. Moon, J. S. Choi, J. G. Kim, and D. G. Lee, “Antifungal effect of silver nanoparticles on dermatophytes,” J. Microbiol. Biotechnol., 2008.
[24] H. S. Al-Jobory, K. M. A. Hasan, and A. F. Alkaim, “Antifungal effect of silver nanoparticles on dermatophytes isolated from clinicalspecimens,” Plant Arch., 2020.
[25] F. Noorbakhsh, S. Rezaie, and A. R. Shahverdi, “Antifungal Effects of Silver Nanoparticle alone and with Combination of Antifungal Drug on Dermatophyte Pathogen Trichophyton Rubrum,” 2011 Int. Conf. Biosci. Biochem. Bioinformatics., 2011.
[26] R. Algotiml, A. Gab-Alla, R. Seoudi, H. H. Abulreesh, M. Z. El-Readi, and K. Elbanna, “Anticancer and antimicrobial activity of biosynthesized Red Sea marine algal silver nanoparticles,” Sci. Rep., 2022, doi: 10.1038/s41598-022-06412-3.
[27] A. K. Lafta, H. A. Ajah, O. A. A. Dakhil, and W. M. Ali AL-Wattar, “Biosynthesis of silver nanoparticles using biomass of Cladosporium cladosporioidesand antifungalactivity against pathogenic fungi causing onychomycosis,” Plant Arch., 2019.
[28] F. S. AlQahtani, M. M. AlShebly, M. Govindarajan, S. Senthilmurugan, P. Vijayan, and G. Benelli, “Green and facile biosynthesis of silver nanocomposites using the aqueous extract of Rubus ellipticus leaves: Toxicity and oviposition deterrent activity against Zika virus, malaria and filariasis mosquito vectors,” J. Asia. Pac. Entomol., 2017, doi: 10.1016/j.aspen.2016.12.004.
[29] A. Hebeish, M. H. El-Rafie, M. A. EL-Sheikh, A. A. Seleem, and M. E. El-Naggar, “Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles,” Int. J. Biol. Macromol., 2014, doi: 10.1016/j.ijbiomac.2014.01.071.
[30] Z. Hussain, M. A. S. Abourehab, S. Khan, and H. E. Thu, “Silver nanoparticles: A promising nanoplatform for targeted delivery of therapeutics and optimized therapeutic efficacy,” in Metal Nanoparticles for Drug Delivery and Diagnostic Applications, 2019. doi: 10.1016/B978-0-12-816960-5.00009-4.
[31] A. F. Khafaga, H. M. Abu-Ahmed, A. N. El-Khamary, I. M. Elmehasseb, and H. M. Shaheen, “Enhancement of Equid Distal Limb Wounds Healing by Topical Application of Silver Nanoparticles,” J. Equine Vet. Sci., 2018, doi: 10.1016/j.jevs.2017.11.013.
[32] R. F. Pereira and P. J. Bártolo, “Traditional Therapies for Skin Wound Healing,” Advances in Wound Care. 2016. doi: 10.1089/wound.2013.0506.
[33] A. Hebeish, M. H. El-Rafie, M. A. El-Sheikh, A. Seleem, and M. E. El-Naggar, “More insight on charcterization of nano-sized particles of silver powder and their application in antimicrobial wound dressing and antiinflammatory efficacy,” Egypt. J. Chem., 2013, doi: 10.21608/ejchem.2013.1106.
[34] S. D. Li, Y. C. Chen, M. J. Hackett, and L. Huang, “Tumor-targeted delivery of siRNA by self-assembled nanoparticles,” Mol. Ther., 2008, doi: 10.1038/sj.mt.6300323.
[35] A. Elzoheiry, E. Ayad, N. Omar, K. Elbakry, and A. Hyder, “Anti-liver fibrosis activity of curcumin/chitosan-coated green silver nanoparticles,” Sci. Rep., 2022, doi: 10.1038/s41598-022-23276-9.
[36] E. Phillips et al., “Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe,” Sci. Transl. Med., 2014, doi: 10.1126/scitranslmed.3009524.
[37] NA, “Textbook Section 15.1 Seven-Transmembrane-Helix Receptors Change Conformation in Response to Ligand Binding and Activate G Proteins,” Ncbi.Nlm, 2002.
[38] L. S. Li, J. Hu, W. Yang, and A. P. Alivisatos, “Band Gap Variation of Size- and Shape-Controlled Colloidal CdSe Quantum Rods,” Nano Lett., 2001, doi: 10.1021/nl015559r.
[39] V. K. Sharma, R. A. Yngard, and Y. Lin, “Silver nanoparticles: Green synthesis and their antimicrobial activities,” Advances in Colloid and Interface Science. 2009. doi: 10.1016/j.cis.2008.09.002.
[40] S. Singla, A. Jana, R. Thakur, C. Kumari, S. Goyal, and J. Pradhan, “Green synthesis of silver nanoparticles using Oxalis griffithii extract and assessing their antimicrobial activity,” OpenNano, 2022, doi: 10.1016/j.onano.2022.100047.
[41] G. Bachler, N. von Goetz, and K. Hungerbühler, “A physiologically based pharmacokinetic model for ionic silver and silver nanoparticles,” Int. J. Nanomedicine, 2013, doi: 10.2147/IJN.S46624.
[42] L. L. Aylward, G. Bachler, N. von Goetz, D. Poddalgoda, S. M. Hays, and A. Nong, “Biomonitoring Equivalents for interpretation of silver biomonitoring data in a risk assessment context,” Int. J. Hyg. Environ. Health, 2016, doi: 10.1016/j.ijheh.2016.05.005.
[43] Z. Lin, N. A. Monteiro-Riviere, and J. E. Riviere, “Pharmacokinetics of metallic nanoparticles,” Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2015. doi: 10.1002/wnan.1304.
[44] W. Lou, L. Wang, S. Dong, Z. cao, J. Sun, and Y. Zhang, “A facility synthesis of bismuth-iron bimetal MOF composite silver vanadate applied to visible light photocatalysis,” Opt. Mater. (Amst)., 2022, doi: 10.1016/j.optmat.2022.112168.
[45] S. M. Attia, M. S. Abdelfatah, and M. M. Mossad, “Characterization of pure and composite resorcinol formaldehyde aerogels doped with silver,” in Journal of Physics: Conference Series, 2017. doi: 10.1088/1742-6596/869/1/012036.
[46] T. Liu et al., “Preparation of silver nano-composites with photosynergistic antibacterial action,” Hecheng Shuzhi Ji Suliao/China Synth. Resin Plast., 2022, doi: 10.19825/j.issn.1002-1396.2022.06.01.
[47] N. N. Al-Dabbagh, F. A. Z. Fattima, and N. K. K. Hindi, “Antimicrobial effect of sliver nanoparticles synthesized by chemical reduction on some bacteria and fungi,” Int. J. Appl. Eng. Res., 2017.
[48] Q. Zhang, H. Liu, X. Wang, X. Shi, and X. Duan, “Fabrication and characterization of mano silver powder prepared by spray pyrolysis,” J. Wuhan Univ. Technol. Mater. Sci. Ed., 2009, doi: 10.1007/s11595-009-6871-x.
[49] B. Suman et al., “EFFECT OF SILVER NANO PARTICLES SYNTHESIZED OF TRICHODESMA INDICUM AGAINST NAJA NAJA (COBRA) VENOM,” Int. J. Pharm. Sci. Res., 2018.
[50] T. A. A. Hussian, G. S. Jaber, and A. T. Hassan, “Radioactive Waste Management Using Ag\CNTs Composite Prepared by Laser Ablation in Liquid,” NeuroQuantology, 2022, doi: 10.14704/nq.2022.20.4.nq22112.
[51] B. Tang, G. Chen, Q. Chen, and J. Tai, “Preparation of sliver nanoparticles by liquid chemical reduction method,” in International Conference on Digital Printing Technologies, 2011. doi: 10.2352/issn.2169-4451.2011.27.1.art00021_2.
[52] M. Salah Abdel-Hamid et al., “Biogenic and characterizations of new silver nanoparticles stabilized with indole acetic acid derived from Azospirillum brasilense MMGH-SADAT1, their bioactivity, and histopathological assessment in rats,” Ecotoxicol. Environ. Saf., 2021, doi: 10.1016/j.ecoenv.2021.112521.
[53] Y. Huang, X. Lü, R. Chen, and Y. Chen, “Comparative study of the effects of gold and silver nanoparticles on the metabolism of human dermal fibroblasts,” Regen. Biomater., 2020, doi: 10.1093/RB/RBZ051.
[54] K. Pietrzak, M. Twaruzek, A. Czyzowska, R. Kosicki, and B. Gutarowska, “Influence of silver nanoparticles on metabolism and toxicity of moulds,” Acta Biochim. Pol., 2015, doi: 10.18388/abp.2015_1146.
[55] M. J. Lee et al., “Silver nanoparticles affect glucose metabolism in hepatoma cells through production of reactive oxygen species,” Int. J. Nanomedicine, 2015, doi: 10.2147/IJN.S94907.
[56] M. Van Der Zande et al., “Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure,” ACS Nano, 2012, doi: 10.1021/nn302649p.
[57] F. Ribeiro et al., “Uptake and elimination kinetics of silver nanoparticles and silver nitrate by Raphidocelis subcapitata: The influence of silver behaviour in solution,” Nanotoxicology, 2015, doi: 10.3109/17435390.2014.963724.
[58] I. L. Bergin et al., “Effects of particle size and coating on toxicologic parameters, fecal elimination kinetics and tissue distribution of acutely ingested silver nanoparticles in a mouse model,” Nanotoxicology, 2016, doi: 10.3109/17435390.2015.1072588.
[59] A. Pasricha et al., “Comparative study of leaching of silver nanoparticles from fabric and effective effluent treatment,” J. Environ. Sci., 2012, doi: 10.1016/S1001-0742(11)60849-8.
[60] F. Afkhami, P. Ahmadi, N. Chiniforush, and A. Sooratgar, “Correction to: Effect of different activations of silver nanoparticle irrigants on the elimination of Enterococcus faecalis (Clinical Oral Investigations, (2021), 25, 12, (6893-6899), 10.1007/s00784-021-03979-5),” Clinical Oral Investigations. 2022. doi: 10.1007/s00784-021-04351-3.
[61] F. Afkhami, P. Ahmadi, N. Chiniforush, and A. Sooratgar, “Correction to: Effect of different activations of silver nanoparticle irrigants on the elimination of Enterococcus faecalis,” Clin. Oral Investig., 2022, doi: 10.1007/s00784-021-04351-3.
[62] K. Khwaldia, “Physical and mechanical properties of hydroxypropyl methylcellulose-coated paper as affected by coating weight and coating composition,” BioResources, 2013, doi: 10.15376/biores.8.3.3438-3452.
[63] M. A. Al-Nasassrah, F. Podczeck, and J. M. Newton, “The effect of an increase in chain length on the mechanical properties of polyethylene glycols,” Eur. J. Pharm. Biopharm., 1998, doi: 10.1016/S0939-6411(97)00151-3.
[64] K. S. Hwang et al., “Ca-Doped ZrO2 Thin Films Deposited by Using the Spin-Coating Pyrolysis Process with a Metal Naphthenate Precursor,” J. Korean Phys. Soc., 2003, doi: 10.3938/jkps.43.754.
[65] K. M. Koczkur, S. Mourdikoudis, L. Polavarapu, and S. E. Skrabalak, “Polyvinylpyrrolidone (PVP) in nanoparticle synthesis,” Dalt. Trans., 2015, doi: 10.1039/c5dt02964c.
[66] N. Durán, M. Durán, M. B. de Jesus, A. B. Seabra, W. J. Fávaro, and G. Nakazato, “Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity,” Nanomedicine: Nanotechnology, Biology, and Medicine. 2016. doi: 10.1016/j.nano.2015.11.016.
[67] M. Bednarski et al., “The influence of the route of administration of gold nanoparticles on their tissue distribution and basic biochemical parameters: In vivo studies,” Pharmacol. Reports, 2015, doi: 10.1016/j.pharep.2014.10.019.
[68] S. Sheoran, S. Arora, R. Samsonraj, P. Govindaiah, and S. vuree, “Lipid-based nanoparticles for treatment of cancer,” Heliyon. 2022. doi: 10.1016/j.heliyon.2022.e09403.
[69] H. J. Ryu et al., “Evaluation of silica nanoparticle toxicity after topical exposure for 90 days,” Int. J. Nanomedicine, 2014, doi: 10.2147/IJN.S57929.
[70] M. Sivera et al., “Silver nanoparticles modified by gelatin with extraordinary pH stability and long-term antibacterial activity,” PLoS One, 2014, doi: 10.1371/journal.pone.0103675.
[71] Hemlata, P. R. Meena, A. P. Singh, and K. K. Tejavath, “Biosynthesis of Silver Nanoparticles Using Cucumis prophetarum Aqueous Leaf Extract and Their Antibacterial and Antiproliferative Activity against Cancer Cell Lines,” ACS Omega, 2020, doi: 10.1021/acsomega.0c00155.
[72] M. Pandurangan, G. Enkhtaivan, and D. H. Kim, “Anticancer studies of synthesized ZnO nanoparticles against human cervical carcinoma cells,” J. Photochem. Photobiol. B Biol., 2016, doi: 10.1016/j.jphotobiol.2016.03.002.
[73] C. Wang et al., “Rapid green synthesis of silver and gold nanoparticles using Dendropanax morbifera leaf extract and their anticancer activities,” Int. J. Nanomedicine, 2016, doi: 10.2147/IJN.S97181.
[74] G. Lakshmanan, A. Sathiyaseelan, P. T. Kalaichelvan, and K. Murugesan, “Plant-mediated synthesis of silver nanoparticles using fruit extract of Cleome viscosa L.: Assessment of their antibacterial and anticancer activity,” Karbala Int. J. Mod. Sci., 2018, doi: 10.1016/j.kijoms.2017.10.007.
[75] K. Kalishwaralal et al., “Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells,” Colloids Surfaces B Biointerfaces, 2009, doi: 10.1016/j.colsurfb.2009.04.025.
[76] T. K. Trinh and L. S. Kang, “Response surface methodological approach to optimize the coagulation-flocculation process in drinking water treatment,” Chem. Eng. Res. Des., 2011, doi: 10.1016/j.cherd.2010.12.004.
[77] J. Franková, V. Pivodová, H. Vágnerová, J. Juráňová, and J. Ulrichová, “Effects of silver nanoparticles on primary cell cultures of fibroblasts and keratinocytes in a wound-healing model,” J. Appl. Biomater. Funct. Mater., 2016, doi: 10.5301/jabfm.5000268.
[78] P. Singh, Y. J. Kim, D. Zhang, and D. C. Yang, “Biological Synthesis of Nanoparticles from Plants and Microorganisms,” Trends in Biotechnology. 2016. doi: 10.1016/j.tibtech.2016.02.006.
[79] B. Liu et al., “Prognostic value of inflammation-based scores in patients with osteosarcoma,” Sci. Rep., 2016, doi: 10.1038/srep39862.
[80] L. A. S. Kurban et al., “Pathological nature of renal tumors - does size matter?,” Urol. Ann., 2017, doi: 10.4103/UA.UA_17_17.
[81] I. X. Yin, J. Zhang, I. S. Zhao, M. L. Mei, Q. Li, and C. H. Chu, “The antibacterial mechanism of silver nanoparticles and its application in dentistry,” International Journal of Nanomedicine. 2020. doi: 10.2147/IJN.S246764.
[82] M. Khubchandani, N. R. Thosar, S. Dangore-Khasbage, and R. Srivastava, “Applications of Silver Nanoparticles in Pediatric Dentistry: An Overview,” Cureus, 2022, doi: 10.7759/cureus.26956.
[83] L. M. Stabryla et al., “Role of bacterial motility in differential resistance mechanisms of silver nanoparticles and silver ions,” Nat. Nanotechnol., 2021, doi: 10.1038/s41565-021-00929-w.
[84] J. S. McQuillan, H. Groenaga Infante, E. Stokes, and A. M. Shaw, “Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12,” Nanotoxicology, 2012, doi: 10.3109/17435390.2011.626532.
[85] K. B. Holt and A. J. Bard, “Interaction of silver(I) ions with the respiratory chain of Escherichia coli: An electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag,” Biochemistry, 2005, doi: 10.1021/bi0508542.
[86] N. G. Dengler and H. Tsukaya, “Leaf morphogenesis in dicotyledons: Current issues,” Int. J. Plant Sci., 2001, doi: 10.1086/320145.
[87] A. R. Harifi-Mood, A. Habibi-Yangjeh, and M. R. Gholami, “Solvent effects on kinetics of the reaction between 2-chloro-3,5- dinitropyridine and aniline in aqueous and alcoholic solutions of [bmim]BF 4,” Int. J. Chem. Kinet., 2007, doi: 10.1002/kin.20282.
[88] B. Ahmad and J. J. Nieto, “Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions,” Bound. Value Probl., 2009, doi: 10.1155/2009/708576.
[89] P. Shabanzadeh, N. Senu, K. Shameli, and M. M. Tabar, “Artificial intelligence in numerical modeling of silver nanoparticles prepared in montmorillonite interlayer space,” J. Chem., 2013, doi: 10.1155/2013/305713.
[90] Z. A. Ratan et al., “Silver nanoparticles as potential antiviral agents,” Pharmaceutics. 2021. doi: 10.3390/pharmaceutics13122034.
[91] E. O. Mikhailova, “Functional Biomaterials Review Silver Nanoparticles: Mechanism of Action and Probable Bio-Application,” J Funct Biomater., 2020.
[92] A. de Souza et al., “SilverSol® a Nano-Silver Preparation: A Multidimensional Approach to Advanced Wound Healing,” in Wound Healing Research: Current Trends and Future Directions, 2021. doi: 10.1007/978-981-16-2677-7_12.
[93] a. Chmielowiec-Korzeniowska, L. Krzosek, L. Tymczyna, M. Pyrz, and a. Drabik, “Bactericidal, fungicidal and virucidal properties of nanosilver. Mode of action and potential application. A review.,” Ann. Univ. Mariae Curie-Sklodowska, 2013.
[94] M. P. Patil and G. Do Kim, “Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles,” Applied Microbiology and Biotechnology. 2017. doi: 10.1007/s00253-016-8012-8.
[95] A. Jain, R. Anitha, and S. Rajeshkumar, “Anti inflammatory activity of silver nanoparticles synthesised using cumin oil,” Res. J. Pharm. Technol., 2019, doi: 10.5958/0974-360X.2019.00469.4.
[96] F. Arshad et al., “Bioinspired and Green Synthesis of Silver Nanoparticles for Medical Applications: A Green Perspective,” Applied Biochemistry and Biotechnology. 2023. doi: 10.1007/s12010-023-04719-z.
[97] R. V. & Rai and J. A. Bai, “Nanoparticles and their potential application as antimicrobials,” Formatex, 2011.
[98] A. Luceri, R. Francese, D. Lembo, M. Ferraris, and C. Balagna, “Silver Nanoparticles: Review of Antiviral Properties, Mechanism of Action and Applications,” Microorganisms. 2023. doi: 10.3390/microorganisms11030629.
[99] A. Salleh et al., “The potential of silver nanoparticles for antiviral and antibacterial applications: A mechanism of action,” Nanomaterials. 2020. doi: 10.3390/nano10081566.
[100] R. Jamunkar et al., “Application of Silver Nanoparticles as a New Alternative Antiviral Agent for SARS-CoV-2: A Review,” Curr. Nanosci., 2021,
doi: 10.2174/1573413717666211118105415.