Main Article Content

Dr Madiha Umar
Tayyaba Bari
Dr. Fahimullah
Rimsha Qasim
Hadia Khursheed
Dr. Robina Tasleem
Dr. Hafiz Mahmood azam




This research article delves into a comprehensive quantitative analysis of three groundbreaking biocompatible materials titanium alloys, zirconia ceramics, and biodegradable polymers each designed to optimize dental implant performance. The mechanical assessments revealed titanium alloys' outstanding tensile strength of 900 MPa, compressive strength of 1,200 MPa, and an elastic modulus of 110 GPa, surpassing traditional materials. Zirconia ceramics displayed a harmonious balance of strength (700 MPa) and esthetics, showcasing versatility for various dental applications. Despite the lower mechanical strength (200 MPa), biodegradable polymers exhibited commendable flexibility and suitability for specific load-bearing scenarios. The corrosion resistance evaluations demonstrated titanium alloys' exceptional stability with a corrosion rate of 0.05 mm/year, ensuring long-term performance in physiological environments. Zirconia ceramics exhibited negligible corrosion, emphasizing robust resistance to chemical degradation. Biodegradable polymers, assessed for controlled degradation, displayed corrosion rates tailored for optimal tissue response. In terms of biocompatibility, titanium alloys showcased a 95% in vitro cell viability, coupled with histological evidence of robust osseointegration and minimal inflammatory responses in vivo. Zirconia ceramics demonstrated high biocompatibility through in vitro cellular responses and favorable tissue integration in histological studies. Biodegradable polymers sustained biocompatibility with controlled degradation, promoting tissue regeneration while minimizing inflammatory reactions. The economic feasibility analysis, encompassing initial expenses, maintenance, and potential complications, revealed titanium alloys as cost-effective, while zirconia ceramics exhibited competitive economic viability. The cost-effectiveness of biodegradable polymers varied based on specific applications, underscoring their suitability for targeted clinical scenarios. This study provides valuable quantitative insights, aiding clinicians, researchers, and manufacturers in evidence-based decision-making for the advancement of dental implant materials, ultimately contributing to improved patient outcomes and enhanced clinical practices.

Abstract 214 | Pdf Downloads 92


1. Al-Nomay, N., & Khalid, A. (2023). Patients’ Maintenance Care towards Dental Implant as an Option for Replacement of Missing Teeth in Riyadh, Saudi Arabia. Journal of Health Informatics in Developing Countries, 17(02).
2. Al-Zubaidi, S. M., Madfa, A. A., Mufadhal, A. A., Aldawla, M. A., Hameed, O. S., & Yue, X.-G. (2020). Improvements in clinical durability from functional biomimetic metallic dental implants. Frontiers in Materials, 7, 106.
3. Bandyopadhyay, A., Mitra, I., Goodman, S. B., Kumar, M., & Bose, S. (2023). Improving biocompatibility for next generation of metallic implants. Progress in Materials Science, 133, 101053.
4. Benatti, A. C. B., Pattaro, A. F., Rodrigues, A. A., Xavier, M. V., Kaasi, A., Barbosa, M. I. R., . . . Kharmandayan, P. (2019). Bioreabsorbable polymers for tissue engineering: PLA, PGA, and their copolymers Materials for biomedical engineering (pp. 83-116): Elsevier.
5. Bordenave, J. M. G. (2021). Zirconia Implants vs Titanium Implants.
6. Castillo-Dalí, G., Velázquez-Cayón, R., Serrera-Figallo, M. A., Rodríguez-González-Elipe, A., Gutierrez-Pérez, J.-L., & Torres-Lagares, D. (2015). Importance of poly (lactic-co-glycolic acid) in scaffolds for guided bone regeneration: A focused review. Journal of Oral Implantology, 41(4), e152-e157.
7. Cesar, P. F., Salazar-Marocho, S., de Lima, E., da Silva, L. H., Fukushima, K., & de Paula Miranda, R. B. (2019). Zirconia in Dentistry Dental Biomaterials (pp. 147-171): World Scientific.
8. Chen, Y., De Sa, M. J. C., Dalton, M., & Devine, D. M. (2019). Biodegradable medical implants. Bioresorbable polymers.
9. Chopra, D., Guo, T., Gulati, K., & Ivanovski, S. (2023). Load, unload and repeat: Understanding the mechanical characteristics of zirconia in dentistry. Dental Materials.
10. Halepas, S., MacCormac, K., & Ferneini, E. M. (2022). Dental Implants and Bone Augmentation The History of Maxillofacial Surgery: An Evidence-Based Journey (pp. 135-155): Springer.
11. Iqbal, N., Khan, A. S., Asif, A., Yar, M., Haycock, J. W., & Rehman, I. U. (2019). Recent concepts in biodegradable polymers for tissue engineering paradigms: A critical review. International Materials Reviews, 64(2), 91-126.
12. Kunrath, M. F., Gupta, S., Lorusso, F., Scarano, A., & Noumbissi, S. (2021). Oral tissue interactions and cellular response to zirconia implant-prosthetic components: A critical review. Materials, 14(11), 2825.
13. Morsada, Z., Hossain, M. M., Islam, M. T., Mobin, M. A., & Saha, S. (2021). Recent progress in biodegradable and bioresorbable materials: From passive implants to active electronics. Applied Materials Today, 25, 101257.
14. Nasution, A. K., & Hermawan, H. (2016). Degradable biomaterials for temporary medical implants. Biomaterials and Medical Devices: A Perspective from an Emerging Country, 127-160.
15. Ottria, L., Lauritano, D., Andreasi Bassi, M., Palmieri, A., Candotto, V., Tagliabue, A., & Tettamanti, L. (2018). Mechanical, chemical and biological aspects of titanium and titanium alloys in implant dentistry. J. Biol. Regul. Homeost. Agents, 32(Suppl 1), 81-90.
16. Özcan, M., Hotza, D., Fredel, M. C., Cruz, A., & Volpato, C. A. M. (2021). Materials and manufacturing techniques for polymeric and ceramic scaffolds used in implant dentistry. Journal of Composites Science, 5(3), 78.
17. Padhye, N. M., Calciolari, E., Zuercher, A. N., Tagliaferri, S., & Donos, N. (2023). Survival and success of zirconia compared with titanium implants: a systematic review and meta-analysis. Clinical Oral Investigations, 27(11), 6279-6290.
18. Popov, V. V., Muller-Kamskii, G., Kovalevsky, A., Dzhenzhera, G., Strokin, E., Kolomiets, A., & Ramon, J. (2018). Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases. Biomedical engineering letters, 8, 337-344.
19. Revathi, A., Borrás, A. D., Muñoz, A. I., Richard, C., & Manivasagam, G. (2017). Degradation mechanisms and future challenges of titanium and its alloys for dental implant applications in oral environment. Materials Science and Engineering: C, 76, 1354-1368.
20. Roehling, S., Schlegel, K. A., Woelfler, H., & Gahlert, M. (2019). Zirconia compared to titanium dental implants in preclinical studies—A systematic review and meta‐analysis. Clinical oral implants research, 30(5), 365-395.
21. Ruiz Henao, P. A., Caneiro Queija, L., Mareque, S., Tasende Pereira, A., Liñares González, A., & Blanco Carrion, J. (2021). Titanium vs ceramic single dental implants in the anterior maxilla: A 12‐month randomized clinical trial. Clinical Oral Implants Research, 32(8).
22. Saeed, F., Muhammad, N., Khan, A. S., Sharif, F., Rahim, A., Ahmad, P., & Irfan, M. (2020). Prosthodontics dental materials: From conventional to unconventional. Materials Science and Engineering: C, 106, 110167.
23. Scheuber, S., Hicklin, S., & Brägger, U. (2012). Implants versus short‐span fixed bridges: survival, complications, patients' benefits. A systematic review on economic aspects. Clinical oral implants research, 23, 50-62.
24. Song, R., Murphy, M., Li, C., Ting, K., Soo, C., & Zheng, Z. (2018). Current development of biodegradable polymeric materials for biomedical applications. Drug design, development and therapy, 3117-3145.
25. Sun, X., Xu, C., Wu, G., Ye, Q., & Wang, C. (2017). Poly (lactic-co-glycolic acid): Applications and future prospects for periodontal tissue regeneration. Polymers, 9(6), 189.
26. W. Nicholson, J. (2020). Titanium alloys for dental implants: A review. Prosthesis, 2(2), 11.
27. Webber, L. P., Chan, H.-L., & Wang, H.-L. (2021). Will zirconia implants replace titanium implants? Applied Sciences, 11(15), 6776.
28. Wirth, J., Tahriri, M., Khoshroo, K., Rasoulianboroujeni, M., Dentino, A. R., & Tayebi, L. (2017). Surface modification of dental implants Biomaterials for oral and dental tissue engineering (pp. 85-96): Elsevier.
29. Wu, H., Chen, X., Kong, L., & Liu, P. (2023). Mechanical and Biological Properties of Titanium and Its Alloys for Oral Implant with Preparation Techniques: A Review. Materials, 16(21), 6860.
30. Zadeh, P. N., Lümkemann, N., Sener, B., Eichberger, M., & Stawarczyk, B. (2018). Flexural strength, fracture toughness, and translucency of cubic/tetragonal zirconia materials. The Journal of prosthetic dentistry, 120(6), 948-954.
31. Zhu, G., Wang, G., & Li, J. J. (2021). Advances in implant surface modifications to improve osseointegration. Materials Advances, 2(21), 6901-6927.

Most read articles by the same author(s)