PRACTICAL APPLICATION AND ANALYSIS OF VARIOUS CHEMICAL EXTRACTIONS DERIVED FROM CUCURBITA MAXIMA, PISUM SATIVUM, AND APHANUS SAIVUS L.

Main Article Content

Wajeeha Nusrat
Ghuncha Riaz
Uzma Shahid
Rabail Urooj
Kainat Nisar
Sahar Maqbool
Dr. Madiha Rohi
Dr. Mahwash Aziz
Arshad Rasool

Keywords

Extraction Methods, SFE, UAE, MAE, Vegetable Sponge, By-Products

Abstract

Planning/method/approach: Every year, the fruit and vegetable industry processes 1,300 million tonnes (MT) of wasted food. The skins and seeds of these vegetables, rich in flavonoids, phenolic compounds, pectin, lipids, and fiber, are discarded. To overcome the limitations and disadvantages of traditional extraction methods, new extraction technologies have been developed, such as B. extraction with pressurized liquid, microwave extraction, ultrasonically assisted extraction and extraction with supercritical fluids. Various extraction strategies for separating bioactive chemicals have been extensively studied over the past two decades. This post focuses on innovative extraction technologies, their disadvantages and how to optimize the extraction of bioactive ingredients from fruit and vegetable residues.


Findings: This article analyzes the extraction methods, composition, and unique applications of the beneficial components that are separated from food waste using Cucurbita maxima, Aphanus saivus L., and Pisum sativum. The Observe additionally highlights the contemporary studies on nutrient profile, pharmacological advantages and substance use.

Abstract 342 | pdf Downloads 92

References

1. Hussain, A., Kausar, T., Din, A., Murtaza, M. A., Jamil, M. A., Noreen, S., ... & Ramzan, M. A. (2021). Determination of total phenolic, flavonoid, carotenoid, and mineral contents in peel, flesh, and seeds of pumpkin (Cucurbita maxima). Journal of Food Processing and Preservation, 45(6), e15542.
2. Pasau, R. L. (2019, June). Antioxidant activity and stability of radish bulbs (Raphanus sativus L.) crude extract. In IOP Conference Series: Earth and Environmental Science (Vol. 292, No. 1, p. 012036). IOP Publishing.
3. Lozada, M.I.O., I.R. Maldonade, D.B. Rodrigues, D.S. Santos, B.A.O. Sanchez, P.E.N. de Souza, J.P. Longo, G.B. Amaro and L.d.L. de Oliveira. 2021. Physicochemical characterization and nano-emulsification of three species of pumpkin seed oils with focus on their physical stability. Food Chemistry. 343:128512.
4. Sozer, N., U. Holopainen‐Mantila and K. Poutanen. 2017. Traditional and new food uses of pulses. Cereal Chemistry. 94:66-73.
5. C. D. de Andrade LM, Chatzifragkou A (2018)Optimisation and modelling of supercritical CO2 extractionprocess of carotenoids from carrot peels. J Supercrit Fluids133:94–102.F. B. D.-B. D. A. o. h. f. F. O. b. q. q. e. a. o. O. 2016).
6. Hussain, A., Kausar, T., Din, A., Murtaza, M. A., Jamil, M. A., Noreen, S., ... & Ramzan, M. A. (2021). Determination of total phenolic, flavonoid, carotenoid, and mineral contents in peel, flesh, and seeds of pumpkin (Cucurbita maxima). Journal of Food Processing and Preservation, 45(6), e15542.
7. D. Ciriminna R, Delisi R, Arvati S, Tamburino A, Pagliaro M (2016) Industrial feasibility of natural products extraction with microwave technology. J ChemistrySelect 1(3):549–555.
8. R. S. Garavand F, Vahedikia N, Jafari SM, Technology (2019) Different tech-niques for extraction and micro/nanoencapsulation of saffron bioactive ingredients. Trends Food Sci Technol 89:26–44.
9. S. K. Maran JP, Jeevitha P, Jayalakshmi J, Ashvini G (2015) Microwave-assisted extraction of pectic polysaccharide from waste mango peel. Carbohydr Polym 123:67–71.
10. R.-M. A. Mena-García A, Soria AC, Sanz ML (2019) Green techniques for extraction of bioactive carbohydrates. Trends Analyt Chem 119:115612.
11. M. G. Jalili Safaryan, Ali; Bimakr, Mandana; Zarringhalami, Soheila (2016). Optimization of Ultrasound-Assisted Extraction, Preliminary Characterization and In Vitro Antioxidant Activity of Polysaccharides from Green Pea Pods. Foods, 5(4), 78–. doi:10.3390/foods5040078
12. L. E. O. M. Ordoñez S., Oswaldo; Pinchao P., Yamid Alexis (2019). Evaluation of the effect of different factors on the ultrasound assisted extraction of phenolic compounds of the pea pod. DYNA, 86(210), 211–215. doi:10.15446/dyna.v86n210.72880
13. B. S. Kulczy ́nski, A.; Gramza-Michałowska, A. Antioxidant potential of phytochemicals in pumpkin varieties belonging toCucurbita moschataandCucurbita pepospecies.CyTA J. Food2020,18, 472–484.
14. A. R. R. Corbu, A.; Nour, V. Edible vegetable oils enriched with carotenoids extracted from by-products of sea buckthorn(Hippophae rhamnoidesssp.sinensis): The investigation of some characteristic properties, oxidative stability and the effect onthermal behaviour.J. Therm. Anal. Calorim.2020,142, 735–747.
15. L. Castaldo, Izzo, L., Gaspari, A., Lombardi, S., Rodríguez-Carrasco, Y., Narváez, A., Grosso, M., Ritieni, A., 2021. Chemical Composition of Green Pea (Pisum sativum L.) Pods Extracts and Their Potential Exploitation as Ingredients in Nutraceutical Formulations. Antioxidants 11, .
16. G. Nasir, Zaidi, S., Tabassum, N., Asfaq, 2022. A review on nutritional composition, health benefits and potential applications of by-products from pea processing. Biomass Conversion and Biorefinery.. doi:10.1007/s13399-022-03324-0.
17. Z. Wang, S. Li, S. Ge and S. Lin, Journal of agricultural and food chemistry, 2020, 68, 3330-3343.
18. B.-F. J. Martínez-Ramos T, Watson NJ, Ruiz-López II, Che-Galicia G, Corona-Jiménez E (2020) Effect of solvent composition and its interac-tion with ultrasonic energy on the ultrasound-assisted extraction of phenolic compounds from Mango peels (Mangifera indica L.). Food Bioprod Process 122:41–54.
19. L. H. Ma J-S, Han C-R, Zeng S-J, Xu X-J, Lu D-J, He H-J (2020) Extraction, char-acterization and antioxidant activity of polysaccharide from Pouteria campechiana seed. Carbohydr Polym 229:115409.
20. A. R. Setyorini D, Machmudah S, Winardi S, Kanda H, Goto M(2018) Extraction of phytochemical compounds fromEucheumacottoniiand Gracilaria sp using supercritical CO2 followed bysubcritical water. In: MATEC Web of Conferences, EDPSciences, p 03051.
21. A. Salami, Asefi, N., Kenari, R.E., Gharekhani, M., 2021. Extraction of pumpkin peel extract using supercritical CO2 and subcritical water technology: Enhancing oxidative stability of canola oil. Journal of Food Science and Technology 58, 1101–1109.. doi:10.1007/s13197-020-04624-x.
22. R. O. Campardelli, E.; Scognamiglio, M.; Porta, G. Della; Prof., E. Reverchon (2016). Palmitoylethanolamide sub-micronization using fast precipitation followed by supercritical fluids extraction. Powder Technology, (), S0032591016306696–. doi:10.1016/j.powtec.2016.09.084
23. T. M. N. Nguyen, & Ngoc, P. T. (2022). Comparison of Extraction Methods for Recovery of Antioxidant Compounds from White Radish Root (Raphanus sativus L.) and Application as A Natural Preservative in Bottled Beer. Chemical Engineering Transactions, 97, 277-282.
24. A. Hussain, Kausar, T., Sehar, S., Sarwar, A., Ashraf, A. H., Jamil, M. A., Noreen, S., Rafique, A., Iftikhar, K., Quddoos, M. Y., Aslam, J., & Majeed, M. A. (2022). A Comprehensive review of functional ingredients, especially bioactive compounds present in pumpkin peel, flesh and seeds, and their health benefits. Food Chemistry Advances, 1, 100067. https://doi.org/10.1016/J.FOCHA.2022.100067
.
25. M. Sharma, Bhat, R., 2021. Extraction of Carotenoids from Pumpkin Peel and Pulp: Comparison between Innovative Green Extraction Technologies (Ultrasonic and Microwave-Assisted Extractions Using Corn Oil). Foods 10, 787.. doi:10.3390/foods10040787s.
26. Y. Wang, L. Xu, H. Shen, J. Wang, W. Liu, X. Zhu, R. Wang, X. Sun and L. Liu, Scientific reports, 2015, 5, 1-13.
27. M. Duan, J. Wang, X. Zhang, H. Yang, H. Wang, Y. Qiu, J. Song, Y. Guo and X. Li, Frontiers in plant science, 2017, 8, 1605.
28. Zhou, C. L., Mi, L., Hu, X. Y., & Zhu, B. H. (2017). Evaluation of three pumpkin species: Correlation with physicochemical, antioxidant properties and classification using SPME-GC–MS and E-nose methods. Journal of Food Science and Technology, 54, 3118-3131.
29. M. Gamba, E. Asllanaj, P. F. Raguindin, M. Glisic, O. H. Franco, B. Minder, W. Bussler, B. Metzger, H. Kern and T. Muka, Trends in Food Science & Technology, 2021, 113, 205-218.
30. J. Gao, W.-B. Li, H.-F. Liu and F.-B. Chen, Plos one, 2020, 15, e0231729.
31. T. Nishio, in The radish genome, Springer, 2017, pp. 1-10.
32. R. Goyeneche, A. Fanovich, C. R. Rodrigues, M. C. Nicolao and K. Di Scala, The Journal of Supercritical Fluids, 2018, 135, 78-83.
33. Altaweel, A. A., Alasoom, A. J., Burshed, H. A., Alshawush, M. M., & Khalil, H. E. (2022). Insight into Screening of Secondary Metabolites, Phenolic and Flavonoid Contents and Antioxidant Activity of Raphanus sativus L. Cultivated in Eastern Province of Saudi Arabia. Pharmacognosy Journal, 14(4).
34. Yang, Z., Zhai, X., Zhang, C., Shi, J., Huang, X., Li, Z., ... & Xiao, J. (2022). Agar/TiO2/radish anthocyanin/neem essential oil bionanocomposite bilayer films with improved bioactive capability and electrochemical writing property for banana preservation. Food Hydrocolloids, 123, 107187.
35. Khan, R. S., Khan, S. S., & Siddique, R. (2022). Radish (Raphanus Sativus): Potential antioxidant role of bioactive compounds extracted from radish leaves-A review. Pakistan Journal of Medical & Health Sciences, 16(09), 2-2.
36. Zhang, C., Sun, G., Cao, L., & Wang, L. (2020). Accurately intelligent film made from sodium carboxymethyl starch/κ-carrageenan reinforced by mulberry anthocyanins as an indicator. Food Hydrocolloids, 108, 106012.
37. Yafetto, L. (2022). Application of solid-state fermentation by microbial biotechnology for bioprocessing of agro-industrial wastes from 1970 to 2020: A review and bibliometric analysis. Heliyon, e09173.
38. Ceclu, L., Mocanu, D. G., & Nistor, O. V. (2020). Pumpkin–health benefits. diabetes, 12, 23.
39. Ahmad, G., & Khan, A. A. (2019). Pumpkin: horticultural importance and its roles in various forms; a review. Int. J. Hortic. Agric, 4, 1-6.
40. Mithra, M. G., & Padmaja, G. (2017). Comparative alterations in the compositional profile of selected root and vegetable peels subjected to three pretreatments for enhanced saccharification. International Journal of Environment, Agriculture and Biotechnology, 2(4), 238846.
41. Kotsanopoulos, K., Behera, S. S., & Ray, R. C. (2022). Microbial Production of Polysaccharides, Oligosaccharides, and Sugar Alcohols from Vegetables and Fruit Wastes. In Fruits and Vegetable Wastes: Valorization to Bioproducts and Platform Chemicals (pp. 343-364). Singapore: Springer Nature Singapore.
42. Yang, Z., Zhai, X., Zhang, C., Shi, J., Huang, X., Li, Z., ... & Xiao, J. (2022). Agar/TiO2/radish anthocyanin/neem essential oil bionanocomposite bilayer films with improved bioactive capability and electrochemical writing property for banana preservation. Food Hydrocolloids, 123, 107187.
43. Leichtweis, M. G., Molina, A. K., Pires, T. C., Dias, M. I., Calhelha, R., Bachari, K., ... & Barros, L. (2022). Biological Activity of Pumpkin Byproducts: Antimicrobial and Antioxidant Properties. Molecules, 27(23), 8366.
44. Anugrah, D. S. B., Delarosa, G., Wangker, P., Pramitasari, R., & Subali, D. (2023). Utilising N‐glutaryl chitosan‐based film with butterfly pea flower anthocyanin as a freshness indicator of chicken breast. Packaging Technology and Science.
45. Tasiu, M., Abdulmumin, Y., Abdulmumin, T. M., Murtala, M., Shehu, A., Abubakar, A. L., ... & Binta, S. S. (2022). Antimicrobial Evaluation of Biologically Synthesized Silver Nanoparticles using Aqueous Peel Extracts of Guava (Psidium guavaja) and Pumpkin (cucurbita pepo). Asian Journal of Biotechnology and Genetic Engineering, 5(2), 20-29.
46. Ninčević Grassino, A., Rimac Brnčić, S., Badanjak Sabolović, M., Šic Žlabur, J., Marović, R., & Brnčić, M. (2023). Carotenoid Content and Profiles of Pumpkin Products and By-Products. Molecules, 28(2), 858.
47. Tselaesele, N., Bultosa, G., Molapisi, M., Makhabu, S., Kobue-Lekalake, R., Haki, G. D., ... & Sonno, K. (2023). Plant-based traditional foods and beverages of Gumare Village, Botswana. Food Production, Processing and Nutrition, 5(1), 2.