DEVELOPING CHRONIC UNPREDICTABLE/ALTERNATING STRESS MODEL IN WISTAR ALBINO RATS

Main Article Content

Dr. Madiha Khattak
Dr. Muhammad Omar Malik
Dr. Robina Usman
Dr. Syed Hamid Habib
Dr. Umar Saddique

Keywords

Chronic Alternating Stress, Wistar Albino Rats, Cold Water Immersion Stress, Restraint Stress, Circadian Rhythm, Corticosterone, Adrenocorticotropic Hormone, Hypothalamic Pituitary Adrenal axis, Hole Board Behavioural Test.

Abstract

In order to study stress a lot of animal models have been developed so as to copy as closely as possible the stress experienced by humans in everyday life. Some of these models are very harsh and cause permanent physical damage or psychological diseases in animals. Some of the models are time consuming and are not strong enough leading to adaptation. Some models are too expensive and not visibly advantageous. To contribute to this field, we designed a chronic alternating stress model aimed at examining the impact of stress on both parent rats and their initial offspring generation. This model involved subjecting the rodents to a three-week regimen of chronic alternating stressors, encompassing disruptions to circadian rhythms, cold water immersion and restraint-induced stress. This manuscript presents an in-depth account of our methodology and draws comparisons with existing stress models. In conclusion chronic alternating stress model, administered over a 3-week period, effectively induced stress related behavioral changes and activated the Hypothalamic Pituitary Adrenal (HPA) axis by raising Corticosterone and Adrenocorticotropic Hormone (ACTH).

Abstract 127 | PDF Downloads 81

References

1. Agrawal, A., Jaggi, A.S., Singh, N., 2011. Pharmacological investigations on adaptation in rats subjected to cold water immersion stress. Physiol. Behav. 103, 321–329.
https://doi.org/10.1016/j.physbeh.2011.02.014
2. Algamal, M., Ojo, J.O., Lungmus, C.P., Muza, P., Cammarata, C., Owens, M.J., Mouzon, B.C., Diamond, D.M., Mullan, M., Crawford, F., 2018. Chronic hippocampal abnormalities and blunted HPA axis in an animal model of repeated unpredictable stress. Front. Behav. Neurosci. 12, 1–16. https://doi.org/10.3389/fnbeh.2018.00150
3. Antoniuk, S., Bijata, M., Ponimaskin, E., Wlodarczyk, J., 2019. Chronic unpredictable mild stress for modeling depression in rodents: Meta-analysis of model reliability. Neurosci. Biobehav. Rev. 99, 101–116. https://doi.org/10.1016/j.neubiorev.2018.12.002
4. Atrooz, F., Alkadhi, K.A., Salim, S., 2021. Understanding stress: Insights from rodent models. Curr. Res. Neurobiol. 2, 100013. https://doi.org/10.1016/j.crneur.2021.100013
5. Bailey, K.R., Crawley, J.N., 2009. Anxiety-related behaviors in mice.
6. Brown, G.R., Nemes, C., 2008. The exploratory behaviour of rats in the hole-board apparatus: Is head-dipping a valid measure of neophilia? Behav. Processes 78, 442–448.
https://doi.org/10.1016/j.beproc.2008.02.019
7. Bryda, E.C., 2013. The Mighty Mouse: The Impact of Rodents on Advances in Biomedical Research. Mo. Med. 110, 207–211.
8. Christiansen, S., Bouzinova, E., Fahrenkrug, J., Wiborg, O., 2016. Altered Expression Pattern of Clock Genes in a Rat Model of Depression. Int. J. Neuropsychopharmacol. 19, pyw061. https://doi.org/10.1093/ijnp/pyw061
9. Demeter, E., Sarter, M., Lustig, C., 2008. Rats and Humans Paying Attention. Neuropsychology 22, 787–799. https://doi.org/10.1037/a0013712
10. Finke, J.B., Kalinowski, G.I., Larra, M.F., Schächinger, H., 2018. The socially evaluated handgrip test: Introduction of a novel, time-efficient stress protocol. Psychoneuroendocrinology 87, 141–146. https://doi.org/10.1016/j.psyneuen.2017.10.013
11. Fonken, L.K., Finy, M.S., Walton, J.C., Weil, Z.M., Workman, J.L., Ross, J., Nelson, R.J., 2009. Influence of light at night on murine anxiety-and depressive-like responses. Behav. Brain Res. 205, 349–354.
12. Glaser, R., Kiecolt-Glaser, J.K., 2005. Stress-induced immune dysfunction: implications for health. Nat. Rev. Immunol. 5, 243–251. https://doi.org/10.1038/NRI1571
13. Harkin, A., Houlihan, D.D., Kelly, J.P., 2002. Reduction in preference for saccharin by repeated unpredictable stress in mice and its prevention by imipramine. J. Psychopharmacol. Oxf. Engl. 16, 115–123. https://doi.org/10.1177/026988110201600201
14. Jiang, X., Wu, J., Tan, B., Yan, S., Deng, N., Wei, H., 2022. Effect of chronic unpredicted mild stress-induced depression on clopidogrel pharmacokinetics in rats.
https://doi.org/10.7717/peerj.14111
15. Kallai, J., Makany, T., Csatho, A., Karadi, K., Horvath, D., Kovacs-Labadi, B., Jarai, R., Nadel, L., Jacobs, J.W., 2007. Cognitive and affective aspects of thigmotaxis strategy in humans. Behav. Neurosci. 121, 21.
16. Katz, R.J., 1982. Animal model of depression: Pharmacological sensitivity of a hedonic deficit. Pharmacol. Biochem. Behav. 16, 965–968. https://doi.org/10.1016/0091-3057(82)90053-3
17. Matisz, C.E., Badenhorst, C.A., Gruber, A.J., 2021. Chronic unpredictable stress shifts rat behavior from exploration to exploitation. Stress 24, 635–644.
https://doi.org/10.1080/10253890.2021.1947235
18. Munn, E., Bunning, M., Prada, S., Bohlen, M., Crabbe, J.C., Wahlsten, D., 2011. Reversed light–dark cycle and cage enrichment effects on ethanol-induced deficits in motor coordination assessed in inbred mouse strains with a compact battery of refined tests. Behav. Brain Res. 224, 259–271.
19. Ohl, F., 2003. Testing for anxiety. Clin. Neurosci. Res. 3, 233–238.
20. Padovan, C.M., Guimaraes, F.S., 2000. Restraint-induced hypoactivity in an elevated plus-maze. Braz. J. Med. Biol. Res. 33, 79–83.
21. Quan, M., Zheng, C., Zhang, N., Han, D., Tian, Y., Zhang, T., Yang, Z., 2011. Impairments of behavior, information flow between thalamus and cortex, and prefrontal cortical synaptic plasticity in an animal model of depression. Brain Res. Bull. 85, 109–116.
https://doi.org/10.1016/j.brainresbull.2011.03.002
22. Radahmadi, M., Alaei, H., Sharifi, M.R., Hosseini, N., 2017. Stress biomarker responses to different protocols of forced exercise in chronically stressed rats. J. Bodyw. Mov. Ther. 21, 63–68.
23. Ramos, A., Kangerski, A.L., Basso, P.F., Santos, J.E.D.S., Assreuy, J., Vendruscolo, L.F., Takahashi, R.N., 2002. Evaluation of Lewis and SHR rat strains as a genetic model for the study of anxiety and pain. Behav. Brain Res. 129, 113–123.
24. Ramos, A., Pereira, E., Martins, G.C., Wehrmeister, T.D., Izídio, G.S., 2008. Integrating the open field, elevated plus maze and light/dark box to assess different types of emotional behaviors in one single trial. Behav. Brain Res. 193, 277–288.
25. Schmatz, R., Mazzanti, C.M., Spanevello, R., Stefanello, N., Gutierres, J., Corrêa, M., da Rosa, M.M., Rubin, M.A., Chitolina Schetinger, M.R., Morsch, V.M., 2009. Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats. Eur. J. Pharmacol. 610, 42–48. https://doi.org/10.1016/j.ejphar.2009.03.032
26. Schweizer, M.C., Henniger, M.S.H., Sillaber, I., 2009. Chronic Mild Stress ( CMS ) in Mice : Of Anhedonia , ‘ Anomalous Anxiolysis ’ and Activity 4.
https://doi.org/10.1371/journal.pone.0004326
27. Theilmann, W., Rosenholm, M., Hampel, P., Löscher, W., Rantamäki, T., 2020. Lack of antidepressant effects of burst-suppressing isoflurane anesthesia in adult male Wistar outbred rats subjected to chronic mild stress. PloS One 15, e0235046.
https://doi.org/10.1371/journal.pone.0235046
28. Tran, I., Gellner, A.-K., 2023. Long-term effects of chronic stress models in adult mice. J. Neural Transm. 130, 1133–1151. https://doi.org/10.1007/s00702-023-02598-6
29. Wei, H., Zhou, T., Tan, B., Zhang, L., Li, M., Xiao, Z., Xu, F., 2017. Impact of chronic unpredicted mild stress-induced depression on repaglinide fate via glucocorticoid signaling pathway. Oncotarget 8, 44351–44365. https://doi.org/10.18632/oncotarget.17874
30. Willner, P., 1997. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl.) 134, 319–329.
31. Xu, G., Li, Y., Ma, C., Wang, C., Sun, Z., Shen, Y., Liu, L., Li, S., Zhang, X., Cong, B., 2019. Restraint Stress Induced Hyperpermeability and Damage of the Blood-Brain Barrier in the Amygdala of Adult Rats. Front. Mol. Neurosci. 12, 32. https://doi.org/10.3389/fnmol.2019.00032
32. Zurawek, D., Kusmider, M., Faron-Gorecka, A., Gruca, P., Pabian, P., Solich, J., Kolasa, M., Papp, M., Dziedzicka-Wasylewska, M., 2017. Reciprocal MicroRNA Expression in Mesocortical Circuit and Its Interplay with Serotonin Transporter Define Resilient Rats in the Chronic Mild Stress. Mol. Neurobiol. 54, 5741–5751. https://doi.org/10.1007/s12035-016-0107-9