INTERPRETATION OF MOLECULAR INTERACTIONS ORIGINATED FROM BACTERICIDAL ACTIVITY OF GLYCYRRHIZIC ACID AGAINST STAPHYLOCOCCUS AUREUS ISOLATED FROM FRESH RAW MINCED BEEF

Main Article Content

Fayez Althobaiti

Keywords

Molecular docking, Staphylococcus aureus, Glycyrrhizic acid, minced beef

Abstract

S. aureus is considered as one of the most popular bacterial agents those are causing foodborne diseases in humans. Additionally, this bacterial can be the cause of food poisoning through production of enterotoxins. For the sake of evaluation of the anti-bacterial activity that possessed by the glycyrrhizic acid we have determined the values of MIC and inhibition zone. The value of MIC obtained was 5000(µg/ml), while the inhibition zone value obtained was 12 mm. On top of that, the glycyrrhizic acid's anti-bacterial action has been examined by molecular docking studies to show how it is delivered through bacterial cell. Moreover, with the aim of understanding the mode of action of glycyrrhizic acid with msrA, mecA, blaZ gene expression protein end products from the molecular level, we have docked glycyrrhizic acid to the active site of different proteins. Glycyrrhizic acid has presented a compact pattern that binds to the active pocket of the protein. For msrA the 2D and 3D binding conformation of glycyrrhizic acid in the active site of msrA it make 1 hydrogen bond with Phe95 (B), while mecA 2D and 3D binding conformation of glycyrrhizic acid in the active site of mecA showed 1 hydrogen bond with Gln 59(c) and, lastly, blaZ 2D and 3D binding conformation of glycyrrhizic acid revealed 1 hydrogen bond with Ser 216 (A), 1 hydrogen bond with Ser 235 (A) ,and 2 hydrogen bonds with Arg 244 (A). .Another detailed analysis showed the hydrogen bonds with the amino acid residues. These interactions permit glycyrrhizic acid to achieve formation of a stable complex with the proteins.

Abstract 96 | pdf Downloads 51

References

1. DINGES, M.M., ORWIN, P.M. and SCHLIVERT, P.M. 2000. Enterotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 13, 16–34.
2. STEHR, F., KRETSCHMAR, M., KRÖGER, C., HUBE, B., SCHÄ- FER, W. (2003): Microbial lipases as virulence factors. J. Mol. Catal. B: Enzym 22, 347-355.
3. Köck R, Schaumburg F, Mellmann A, Köksal M, Jurke A, Becker K, et al. Livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) as causes of human infection and colonization in Germany. PLoS One 2013;8:e55040. doi: 10.1371/journal.pone.0055040 .
4. Taylor PW, Hamilton-Miller JM, Stapleton PD. Antimicrobial properties of green tea catechins. Food
1. Sci Technol Bull 2005; 2: 71±81. PMID: 19844590
5. Green AE, Rowland Rs, Cooper RA, Maddocks SE. The effect of the flavonol morin on adhesion and
2. aggregation of Streptococcus pyogenes. FEMS Microbiol Lett 2012; 333: 54±8. doi: 10.1111/j.1574-
3. 6968.2012.02598.x PMID: 22591139
6. Chung KT, Wong TY, Wei CI, Huang YW, Lin Y. Tannins and human health: a review. Crit Rev Food Sci Nutr 2008; 38: 421±64.
7. Corthout J, Pieters L, Claeys M, Geerts S, Vanden Berghe D, Vlietinck A. Antibacterial and molluscicidal phenolic acids from Spondias mombin. Planta Med 1994; 60: 460±3. doi: 10.1055/s-2006-959532 PMID: 7997478
8. Taleb H, Maddocks SE, Morris RK, Kanekanian AD. The Antibacterial activity of date syrup polyphenols against S. aureus and E. coli. Front Microbiol 2016; 7:198.doi:10.3389/fmicb.2016.00198 PMID: 26952177
9. Hatano T, Kusuda M, Inada K, Ogawa TO, Shiota S, Tsuchiya T et al. Effects of tannins and related polyphenols on methicillin-resistant Staphylococcus aureus. Phytochemistry 2005; 66: 2047±55. doi: 10.1016/j.phytochem.2005.01.013 PMID: 16153408
10. Ming LJ, Yin AC. Therapeutic effects of glycyrrhizic acid. Nat Prod Commun 2013; 8: 415±8. PMID: 23678825
11. Yano S, Harada M, Watanabe K, Nakamaru K, Hatakeyama Y, Shibata S et al. Antiulcer activities of glycyrrhetinic acid derivatives in experimental gastric lesion models. Chem Pharm Bull 1989; 37: 2500±4. PMID: 2605700
12. Long DR, Mead J, Hendricks JM, Hardy ME, Voyich JM. 18β-Glycyrrhetinic acid inhibits methicillinresistant Staphylococcus aureus survival and attenuates virulence gene expression. Antimicrob Agents Chemother 2013; 57: 241±7. doi: 10.1128/AAC.01023-12 PMID: 23114775
13. Li HE,Qiu JZ, Yang ZQ, Dong J, Wang JF, Luo MJ et al. Glycyrrhetinic acid protects mice from Staphylococcus aureus pneumonia. Fitoterapia 2012; 83: 241±248. doi: 10.1016/j.fitote.2011.10.018 PMID:22085765
14. Morris, G. M. and Lim-Wilby, M. (2008) Molecular docking. Methods Mol. Biol., 443, 365–382
15. Chen, Y. Z. and Zhi, D. G. (2001) Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins, 43, 217–226
16. Jiyu Fan, Ailing Fu, Le Zhang. Progress in molecular docking. Quantitative Biology 2019, 7(2): 83–89
17. SUDAGIDAN, M., YENIDUNYA, A.F., GUNES, H. (2005): Identification of staphylococci by 16S internal transcribed spacer rRNA gene restriction fragment length polymorphism. J. Med. Microbial. 54, 823-826.
18. Hindler ,J.A.;Howard,B.J. and Keiser, J.F.(1994): Antimicrobial agents and Susceptibility testing. In: Howard BJ(Editor), Clinical and pathogenic Microbiology. Mosby-Year Book Inc., St. Louis, MO,USA.
19. 1-Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J Chem Inf Model. 2021;61(8):3891–8.
20. Le Loir Y, Baron F, Gautier M. 2003. Staphylococcus aureus and food poisoning. Genet. Mol. Res. 2:63–76.
21. Götz F. 2002. Staphylococcus and biofilms. Mol. Microbiol. 43:1367–1378.
22. Brooks JD, Flint SH. 2008. Biofilms in the food industry: problems and potential solutions. Int. J. Food Sci. Technol. 43:2163–2176.
23. Deleo FR, Otto M, Kreiswirth BN, Chambers HF. 2010. Community associated meticillin-resistant Staphylococcus aureus. Lancet 375:1557–1568.
24. Stapleton PD, Taylor PW. 2002. Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Sci. Prog. 85:57–72.
25. KIYMET GUVEN, MEHMET BURCIN MUTLU, AYSEL GULBANDILAR and PINAR CAKIR.2010. OCCURRENCE AND CHARACTERIZATION OF STAPHYLOCOCCUS AUREUS ISOLATED FROM MEAT AND DAIRY PRODUCTS CONSUMED IN TURKEY. Journal of Food Safety, 30, 196–212.
26. M. SUDAGIDAN and A. AYDIN.2008.Screening virulence properties of staphylococci isolated from meat and meat products. Vet. Med. Austria / Wien. Tierärztl. Mschr, 95, 128 – 134.
27. E. A. H. Mohammeda, Y. Penga, Z. Wanga, X. Qianga, and Q. Zhaoa.2022. Synthesis, Antiviral, and Antibacterial Activity of the Glycyrrhizic Acid and Glycyrrhetinic Acid Derivatives. Russian Journal of Bioorganic Chemistry,Vol. 48, No. 5, pp. 906–918.
28. Ross, J.I., Eady, E.A., Cove, J.H., Cunli¡e, W.J., Baumberg, S. and Wootton, J.C. (1990) Inducible erythromycin resistance in staphylococci is encoded by a member of the ATP-binding transport supergene family. Mol. Microbiol. 4, 1207^1214.
29. Matsuoka, M., Janosi, L., Endou, K. and Nakajima, Y. (1999) Cloning and sequences of inducible and constitutive macrolide resistance genes in Staphylococcus aureus that correspond to an ABC transporter. FEMS Microbiol. Lett. 181, 91^100.
30. Kirby WM. Extraction of a highly potent penicillin inactivator from penicillin resistant staphylococci. Science 1944; 99: 452–3.
31. Richmond MH. Beta-lactamase (Staphylococcus aureus). Methods Enzymol 1975; 43: 664–72.
32. Peacock SJ, Paterson GK. Mechanisms of methicillin resistance in Staphylococcus aureus. Annu Rev Biochem 2015; 84: 577–601.