Main Article Content

Martínez Castro Jesús Alberto
Tat'y Mwata-Velu
Hubert Misonia
Mpangi Musungu Erick
Ayesha Qasim
Fida Ullah
Muhammad Tayyab Zamir
Miele Mboma Joachim
Juan Gabriel Avina-Cervantes
Zahid Ullah
Sunga Baruti Jacob


Lung adenocarcinoma, SOCSs, expression, prognosis, PTMs, therapeutic target


The role of SOCS (Suppressor of Cytokine Signaling) members in cancer has garnered significant research interest. However, their specific role in lung adenocarcinoma awaits a recent report utilizing publicly available databases and software. Our analysis included an exploration of overall survival, expressions, correlation patterns, genetic alterations, prognostic values, network analysis, and gene ontology and posttranslational modification insights of SOCS members using bioinformatics tools. Our findings revealed that both SOCS2 and SOCS3 are downregulated in LUAD. Specifically, posttranslational modification analysis indicated that SOCS2 undergoes phosphorylation at serine 30 and ubiquitination at lysine 38. In the case of SOCS3, potential phosphorylation sites were identified at threonine 86 and tyrosine 165, 166, 221, and 204, with evidence of ubiquitination at lysine 6, 23, 195, and 206. We observed that SOCS genes exhibited a moderate net alteration frequency of 20% in LUAD patients. Additionally, a strong pairwise correlation between SOCS2 and SOCS3 was evident. Furthermore, our analysis revealed the integration of SOCS-related genes into kinase activity. Notably, decreased mRNA levels of SOCS1, SOCS3, SOCS4, and SOCS7, along with increased levels of SOCS5 and SOCS6, were significantly associated with longer overall survival. In conclusion, our study suggests that SOCS5 and SOCS6 function as tumor suppressor genes, while SOCS1, SOCS3, SOCS4, and SOCS7 act as tumor promoter genes in LUAD. Furthermore, our findings indicate that SOCS2 may represent a potential therapeutic target, and SOCS3 could serve as a valuable prognostic biomarker for LUAD patients.

Abstract 100 | pdf Downloads 8


1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians 2021, 71, 209-249.
2. Hoy, H.; Lynch, T.; Beck, M. Surgical treatment of lung cancer. Critical Care Nursing Clinics 2019, 31, 303-313.
3. Lemjabbar-Alaoui, H.; Hassan, O.U.; Yang, Y.-W.; Buchanan, P. Lung cancer: Biology and treatment options. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 2015, 1856, 189-210.
4. Travis, W.D.; Brambilla, E.; Riely, G.J. New pathologic classification of lung cancer: Relevance for clinical practice and clinical trials. J Clin Oncol 2013, 31, 992-1001.
5. Lv, Y.; Song, G.; Li, P. Correlation of socs‑1 gene with onset and prognosis of breast cancer. Oncology letters 2018, 16, 383-387.
6. Peng, H.-Y.; Jiang, S.-S.; Hsiao, J.-R.; Hsiao, M.; Hsu, Y.-M.; Wu, G.-H.; Chang, W.-M.; Chang, J.-Y.; Jin, S.-L.C.; Shiah, S.-G. Il-8 induces mir-424-5p expression and modulates socs2/stat5 signaling pathway in oral squamous cell carcinoma. Molecular oncology 2016, 10, 895-909.
7. Jiang, M.; Zhang, W.-w.; Liu, P.; Yu, W.; Liu, T.; Yu, J. Dysregulation of socs-mediated negative feedback of cytokine signaling in carcinogenesis and its significance in cancer treatment. Frontiers in immunology 2017, 8, 70.
8. Liu, W.-b.; Ao, L.; Zhou, Z.-y.; Cui, Z.-h.; Zhou, Y.-h.; Yuan, X.-y.; Xiang, Y.-l.; Cao, J.; Liu, J.-y. Cpg island hypermethylation of multiple tumor suppressor genes associated with loss of their protein expression during rat lung carcinogenesis induced by 3-methylcholanthrene and diethylnitrosamine. Biochemical and biophysical research communications 2010, 402, 507-514.
9. Shimada, K.; Serada, S.; Fujimoto, M.; Nomura, S.; Nakatsuka, R.; Harada, E.; Iwahori, K.; Tachibana, I.; Takahashi, T.; Kumanogoh, A. Molecular mechanism underlying the antiproliferative effect of suppressor of cytokine signaling‐1 in non‐small‐cell lung cancer cells. Cancer science 2013, 104, 1483-1491.
10. Zhou, Y.; Zhang, Z.; Wang, N.; Chen, J.; Zhang, X.; Guo, M.; John Zhong, L.; Wang, Q. Suppressor of cytokine signalling-2 limits igf1r-mediated regulation of epithelial–mesenchymal transition in lung adenocarcinoma. Cell Death & Disease 2018, 9, 429.
11. Khan, S.U.; Ullah, Z.; Shaukat, H.; Unab, S.; Jannat, S.; Ali, W.; Ali, A.; Irfan, M.; Khan, M.F.; Cervantes-Villagrana, R.D. Tp53 and its regulatory genes as prognosis of cutaneous melanoma. Cancer Informatics 2023, 22, 11769351231177267.
12. Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.; Varambally, S. Ualcan: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 2017, 19, 649-658.
13. Rhodes, D.R.; Yu, J.; Shanker, K.; Deshpande, N.; Varambally, R.; Ghosh, D.; Barrette, T.; Pander, A.; Chinnaiyan, A.M. Oncomine: A cancer microarray database and integrated data-mining platform. Neoplasia 2004, 6, 1-6.
14. Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. Gepia: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic acids research 2017, 45, W98-W102.
15. Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E. Integrative analysis of complex cancer genomics and clinical profiles using the cbioportal. Science signaling 2013, 6, pl1-pl1.
16. Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P. String v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic acids research 2019, 47, D607-D613.
17. Montojo, J.; Zuberi, K.; Rodriguez, H.; Bader, G.D.; Morris, Q. Genemania: Fast gene network construction and function prediction for cytoscape. F1000Research 2014, 3.
18. Lánczky, A.; Győrffy, B. Web-based survival analysis tool tailored for medical research (kmplot): Development and implementation. Journal of medical Internet research 2021, 23, e27633.
19. Ge, S.X.; Jung, D.; Yao, R. Shinygo: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020, 36, 2628-2629.
20. Li, T.; Fan, J.; Wang, B.; Traugh, N.; Chen, Q.; Liu, J.S.; Li, B.; Liu, X.S. Timer: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer research 2017, 77, e108e110.
21. Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic acids research 2016, 44, W90-W97.
22. Xie, X.; Li, X.; Tang, W.; Xie, P.; Tan, X. Primary tumor location in lung cancer: The evaluation and administration. Chinese Medical Journal 2022, 135, 127-136.
23. Tagami‐Nagata, N.; Serada, S.; Fujimoto, M.; Tanemura, A.; Nakatsuka, R.; Ohkawara, T.; Murota, H.; Kishimoto, T.; Katayama, I.; Naka, T. Suppressor of cytokine signalling‐1 induces significant preclinical antitumor effect in malignant melanoma cells. Experimental Dermatology 2015, 24, 864-871.
24. Chikuma, S.; Kanamori, M.; Mise‐Omata, S.; Yoshimura, A. Suppressors of cytokine signaling: Potential immune checkpoint molecules for cancer immunotherapy. Cancer science 2017, 108, 574-580.
25. Sobah, M.L.; Liongue, C.; Ward, A.C. Socs proteins in immunity, inflammatory diseases, and immune-related cancer. Frontiers in Medicine 2021, 8, 727987.
26. Bullock, A.N.; Debreczeni, J.É.; Edwards, A.M.; Sundström, M.; Knapp, S. Crystal structure of the socs2–elongin c–elongin b complex defines a prototypical socs box ubiquitin ligase. Proceedings of the National Academy of Sciences 2006, 103, 7637-7642.
27. Newton, V.A.; Ramocki, N.M.; Scull, B.P.; Simmons, J.G.; McNaughton, K.; Lund, P.K. Suppressor of cytokine signaling-2 gene disruption promotes apcmin/+ tumorigenesis and activator protein1 activation. The American journal of pathology 2010, 176, 2320-2332.
28. Gao, S.P.; Mark, K.G.; Leslie, K.; Pao, W.; Motoi, N.; Gerald, W.L.; Travis, W.D.; Bornmann, W.; Veach, D.; Clarkson, B. Mutations in the egfr kinase domain mediate stat3 activation via il-6 production in human lung adenocarcinomas. The Journal of clinical investigation 2007, 117, 3846-3856.
29. Chunlai, L.; Yongwen, L.; Yunlong, D.; Zhang, H.; Ying, L.; Hongyu, L. Methylation status of the socs3 gene promoter in h2228 cells and eml4–alk-positive lung cancer tissues. Zhongguo Fei Ai Za Zhi 2016, 19.
30. La Manna, S.; Lee, E.; Ouzounova, M.; Di Natale, C.; Novellino, E.; Merlino, A.; Korkaya, H.; Marasco, D. Mimetics of suppressor of cytokine signaling 3: Novel potential therapeutics in triple breast cancer. International Journal of Cancer 2018, 143, 2177-2186.
31. Hillmer, E.J.; Zhang, H.; Li, H.S.; Watowich, S.S. Stat3 signaling in immunity. Cytokine & growth factor reviews 2016, 31, 1-15.
32. Chang, R.; Song, L.; Xu, Y.; Wu, Y.; Dai, C.; Wang, X.; Sun, X.; Hou, Y.; Li, W.; Zhan, X. Loss of wwox drives metastasis in triple-negative breast cancer by jak2/stat3 axis. Nature communications 2018, 9, 3486.
33. Mei, Z.; Chen, S.; Chen, C.; Xiao, B.; Li, F.; Wang, Y.; Tao, Z. Interleukin-23 facilitates thyroid cancer cell migration and invasion by inhibiting socs4 expression via microrna-25. PloS one 2015, 10, e0139456.
34. Sasi, W.; Jiang, W.G.; Sharma, A.; Mokbel, K. Higher expression levels of socs 1, 3, 4, 7 are associated with earlier tumour stage and better clinical outcome in human breast cancer. BMC cancer 2010, 10, 1-13.
35. Yoon, S.; Yi, Y.-S.; Kim, S.S.; Kim, J.-H.; Park, W.S.; Nam, S.W. Socs5 and socs6 have similar expression patterns in normal and cancer tissues. Tumor Biology 2012, 33, 215-221.
36. Albogami, S. Comprehensive analysis of gene expression profiles to identify differential prognostic factors of primary and metastatic breast cancer. Saudi Journal of Biological Sciences 2022, 29, 103318.
37. Chi, Y.; Zheng, W.; Bao, G.; Wu, L.; He, X.; Gan, R.; Shen, Y.; Yin, X.; Jin, M. Circular rna circ_103820 suppresses lung cancer tumorigenesis by sponging mir-200b-3p to release lats2 and socs6. Cell Death & Disease 2021, 12, 185.
38. Kamaraj, Chinnaperumal, et al. "Antiparasitic potential of asteraceae plants: A comprehensive review on therapeutic and mechanistic aspects for biocompatible drug discovery." Phytomedicine Plus 2.4 (2022): 100377.
39. Ali, Amir, et al. "Plant in vitro cultures: A promising and emerging technology for the feasible production of antidiabetic metabolites in Caralluma tuberculata." Frontiers in Endocrinology 13 (2022): 1029942.
40. Murugesan, Selvakumar, et al. "Screening and druggability analysis of Marine active metabolites against SARS-CoV-2: an Integrative Computational Approach." International Journal of Translational Medicine 3.1 (2022): 27-41.
41. Kamaraj, Chinnaperumal, et al. "Exploring the Therapeutic Potential of Traditional Antimalarial and Antidengue Plants: A Mechanistic Perspective." Canadian Journal of Infectious Diseases and Medical Microbiology 2023 (2023).
42. Aravinth, Annamalai, et al. "Evaluation of Brown and red seaweeds-extracts as a novel larvicidal agent against the deadly human diseases-vectors, Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus." Experimental Parasitology (2023): 108651.
43. Khan, Safir Ullah, et al. "Stress Induced Cortisol Release Depresses The Secretion of Testosterone in Patients With Type 2 Diabetes Mellitus." Clinical Medicine Insights: Endocrinology and Diabetes 16 (2023): 11795514221145841.