NOVEL APPROACHES IN OPHTHALMIC DRUG DELIVERY: A COMPREHENSIVE REVIEW

Main Article Content

Reena Tyagi
Vijay Bhalla
Prantika Mondal

Keywords

Ophthalmic drug delivery, Eye diseases, Ocular barriers, Novel drug delivery system, Posterior and anterior segment

Abstract

Ocular drug delivery has consistently posed a challenge for ophthalmologists and drug-delivery experts. Many eye conditions require prolonged and frequent drug treatments, but the effectiveness of topical drugs is often limited to less than 5% due to natural barriers in the eye. Recent advances in nanotechnology offer promising solutions. Novel ocular drug delivery systems encompass innovative approaches such as nanomicelles, nanoparticles, nanosuspensions, liposomes, drug-eluting contact lenses, ocular inserts, and specialized ocular devices. These systems are designed to prolong drug residence on the ocular surface and enhance the bioavailability of therapeutic agents, thereby improving the effectiveness of treatment. This comprehensive review explores the latest developments in novel ophthalmic drug delivery systems and strategies to improve therapeutic outcomes, patient compliance, and minimize side effects. We highlight the potential of these technologies to enhance drug bioavailability, prolong drug release, and target specific ocular tissues, offering promising solutions for various eye conditions. This review thoroughly examines the evolving landscape of ophthalmic drug delivery, offering insights into the future of ocular therapeutics

Abstract 247 | pdf Downloads 127

References

1. Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol 2011;96:614–8.
2. Zarbin MA, Montemagno C, Leary JF, Ritch R. Nanotechnology in ophthalmology. Can J Ophthalmol 2010;45:457–76.
3. Bucolo C, Maltese A, Drago F. When nanotechnology meets the ocular surface. Expert Rev Ophthalmol 2008;3:325–32.
4. Ideta R, Tasaka F, Jang WD, Nishiyama N, Zhang GD, Harada A, et al. Nanotechnology-based photodynamic therapy for neovascular disease using a supramolecular nanocarrier loaded with a dendritic photosensitizer. Nano Lett 2005;5:2426–31.
5. Todd TW, Beecher H, Williams GH, Todd AW. The weight and growth of the human eyeball. Hum Biol 1940;12:1–20.
6. Dingeldein SA, Klyce SD. The topography of normal corneas. Arch Ophthalmol 1989;107:512–8.
7. Klyce SD, Beuerman RW. Structure and function of the cornea. In: Kaufman HE, Barron BA, McDonald MB, Waltman SR, editors. The cornea. New York: Churchill Livingstone Inc; 1988. p. 3–54.
8. Prausnitz MR, Noonan JS. Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J Pharm Sci 1998;87:1479–88.
9. Yi X, Wang Y, Yu FS. Corneal epithelial tight junctions and their response to lipopolysaccharide challenge. Invest Ophthalmol Vis Sci 2000;41:4093–100.
10. Jue B, Maurice DM. The mechanical properties of the rabbit and human cornea. J Biomech 1986;19:847–53.
11. Onugwu AL, Nwagwu CS, Onugwu OS, Echezona AC, Agbo CP, Ihim SA, Emeh P, Nnamani PO, Attama AA, Khutoryanskiy VV. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. Journal of Controlled Release. 2023 Feb 1;354:465-88.
12. Bhattacharjee A, Das PJ, Adhikari P, Marbaniang D, Pal P, Ray S, Mazumder B. Novel drug delivery systems for ocular therapy: With special reference to liposomal ocular delivery. European journal of ophthalmology. 2019 Jan;29(1):113-26.
13. Singh M, Bharadwaj S, Lee KE, Kang SG. Therapeutic nanoemulsions in ophthalmic drug administration: concept in formulations and characterization techniques for ocular drug delivery. J Control Release. 2020;328:895-916.
14. Patel A, Cholkar K, Agrahari V, Mitra AK. Ocular drug delivery systems: An overview. World journal of pharmacology. 2013;2(2):47.
15. R. Gaudana, H.K. Ananthula, A. Parenky, A.K. Mitra, Ocular drug delivery, The AAPS journal, 12 (2010) 348-360
16. Ananthula HK, Vaishya RD, Barot M, Mitra AK. Duane's Ophthalmology. In: Tasman W, Jaeger EA, editors. Bioavailability. Philadelphia: Lippincott Williams & Wilkins; 2009.
17. Patel P, Shastri D, Shelat P, Shukla A. Ophthalmic drug delivery system: challenges and approaches. Systematic Reviews in Pharmacy. 2010 Jul 1;1(2):113.
18. Morrow GL, Abbott RL. Conjunctivitis. American family physician. 1998 Feb 15;57(4):735-46.
19. Moore DL, MacDonald NE, Canadian Paediatric Society, Infectious Diseases and Immunization Committee. Preventing ophthalmia neonatorum. Paediatrics & child health. 2015 Mar 6;20(2):93-6.
20. Hu V, Caswell R, Last A, Burton M, Mabey D. Trachoma and Inclusion conjunctivitis. InHunter's tropical medicine and emerging infectious diseases 2020 Jan 1 (pp. 421-428). Elsevier.
21. Azari AA, Barney NP. Conjunctivitis: a systematic review of diagnosis and treatment. Jama. 2013 Oct 23;310(16):1721-30.
22. Craig JP, Nichols KK, Akpek EK, Caffery B, Dua HS, Joo CK, Liu Z, Nelson JD, Nichols JJ, Tsubota K, Stapleton F. TFOS DEWS II definition and classification report. The ocular surface. 2017 Jul 1;15(3):276-83.
23. Roda M, Corazza I, Bacchi Reggiani ML, Pellegrini M, Taroni L, Giannaccare G, Versura P. Dry eye disease and tear cytokine levels—a meta-analysis. International journal of molecular sciences. 2020 Apr 28;21(9):3111.
24. Sharma S. Keratitis. Bioscience Reports. 2001 Aug;21:419-44.
25. Ting DS, Cairns J, Gopal BP, Ho CS, Krstic L, Elsahn A, Lister M, Said DG, Dua HS. Risk factors, clinical outcomes, and prognostic factors of bacterial keratitis: the Nottingham Infectious Keratitis Study. Frontiers in Medicine. 2021 Aug 11;8:715118.
26. Garg P, Venuganti VV, Roy A, Roy G. Novel drug delivery methods for the treatment of keratitis: moving away from surgical intervention. Expert Opinion on Drug Delivery. 2019 Dec 2;16(12):1381-91.
27. Steinmetz JD, Bourne RR, Briant PS, Flaxman SR, Taylor HR, Jonas JB, Abdoli AA, Abrha WA, Abualhasan A, Abu-Gharbieh EG, Adal TG. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. The Lancet Global Health. 2021 Feb 1;9(2):e144-60.
28. Stein JD. Serious adverse events after cataract surgery. Current opinion in ophthalmology. 2012 May;23(3):219.
29. Delgado MF, Abdelrahman AM, Terahi M, Miro Quesada Woll JJ, Gil-Carrasco F, Cook C, Benharbit M, Boisseau S, Chung E, Hadjiat Y, Gomes JA. Management of glaucoma in developing countries: challenges and opportunities for improvement. ClinicoEconomics and outcomes research. 2019 Sep 27:591-604.
30. Schuster AK, Erb C, Hoffmann EM, Dietlein T, Pfeiffer N. The diagnosis and treatment of glaucoma. Deutsches Ärzteblatt International. 2020 Mar;117(13):225.
31. Gad SC, editor. Pharmaceutical manufacturing handbook: production and processes. John Wiley & Sons; 2008 Mar 17.
32. Van Ooteghem MMM. Formulation of ophthalmic solutions and suspensions. Problems and Advantages. In: Edman P (ed) Biopharmaceutics of ocular drug delivery. CRC Press, Boca Raton; 1993.
33. Ludwig A, Van Ooteghem M. The influence of the osmolality on the precorneal retention of ophthalmic solutions. Journal de Pharmacie de Belgique. 1987 Jul 1;42(4):259-66.
34. Lang JC. Ocular drug delivery conventional ocular formulations. Advanced drug delivery reviews. 1995 Aug 1;16(1):39-43.
35. Rai M, Ingle AP, Gaikwad S, Padovani FH, Alves M. The role of nanotechnology in control of human diseases: perspectives in ocular surface diseases. Critical reviews in biotechnology. 2016 Sep 2;36(5):777-87.
36. Weng Y, Liu J, Jin S, Guo W, Liang X, Hu Z. Nanotechnology-based strategies for treatment of ocular disease. Acta pharmaceutica sinica B. 2017 May 1;7(3):281-91.
37. Wadhwa S, Paliwal R, Paliwal SR, Vyas SP. Nanocarriers in ocular drug delivery: an update review. Current pharmaceutical design. 2009 Aug 1;15(23):2724-50.
38. Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60(15):1638–1649.
39. Vasir JK, Reddy MK, Labhasetwar V (2005) Nanosystems in drug targeting: opportunities and challenges. Curr Nanosci 1:47–64.
40. Sahoo SK, Labhasetwar V (2003) Nanotech approaches to drug delivery and imaging. Drug Discov Today 8(24):1112–1120.
41. Nagarwal RC, Kant S, Singh PN, Maiti P, Pandit JK (2009) Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release 136(1):2–13.
42. Mainardes RM, Silva LP (2004) Drug delivery systems: past, present, and future. Curr Drug Targets 5(5):449–455.
43. Tangri P, Khurana S. Basics of ocular drug delivery systems. Int J Res Pharm Biomed Sci 2011;2:1541-52.
44. Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discovery Today 2008;13:144-51.
45. Kaur IP, Garg A, Singla AK, Aggarwal D. Vesicular systems in ocular drug delivery: an overview. Int J Pharm 2004;269:1-4.
46. Budai L, Hajdu M, Budai M, Grof P, Beni S, Noszal B, et al. Gels and liposomes in optimized ocular drug delivery: studies on ciprofloxacin formulations. Int J Pharm 2007;343:34-40.
47. Kadian RE. Nanoparticles: a promising drug delivery approach. Asian J Pharm Clin Res 2018;11:30-5.
48. Jeencham R, Sutheerawattananonda M, Tiyaboonchai W. Preparation and characterization of chitosan/regenerated silk fibroin (cs/rsf) films as a biomaterial for contact lenses-based ophthalmic drug delivery system. Int J Appl Pharm 2019;11:275-84.
49. Nisha S, Deepak K. An insight to ophthalmic drug delivery system. Int J Pharm Studies Res 2012;3:9-13.
50. Shivhare R, Pathak A, Shrivastava N, Singh C, Tiwari G, Goyal R. An update review on novel advanced ocular drug delivery system. World J Pharm Pharm Sci 2012;1:545-68.
51. Mudgil M, Gupta N, Nagpal M, Pawar PR. Nanotechnology: a new approach for ocular drug delivery system. Int J Pharm Pharm Sci 2012;4:105-12.
52. Raj VK, Mazumder RU, Madhra MO. Ocular drug delivery system: challenges and approaches. Int J Appl Pharm. 2020;12:49-57.
53. Gad SC, editor. Pharmaceutical manufacturing handbook: production and processes. John Wiley & Sons; 2008 Mar 17.
54. Chen H, Khemtong C, Yang X, Chang X, Gao J. Nanonization strategies for poorly water-soluble drugs. Drug discovery today. 2011 Apr 1;16(7-8):354-60.
55. Constantinides PP, Chaubal MV, Shorr R. Advances in lipid nanodispersions for parenteral drug delivery and targeting. Advanced drug delivery reviews. 2008 Mar 17;60(6):757-67.
56. Sun BK, Cha KH, No JW. Ophthalmic nanoemulsion composition containing cyclosporine for treating ophthalmoxerosis. 2011; Patent 101008189
57. Nanjawade BK, Manvi FV, Manjappa AS. RETRACTED: In situ-forming hydrogels for sustained ophthalmic drug delivery. Journal of Controlled Release. 2007 Sep 26;122(2):119-34.
58. Krauland AH, Leitner VM, Bernkop‐Schnürch A. Improvement in the in situ gelling properties of deacetylated gellan gum by the immobilization of thiol groups. Journal of pharmaceutical sciences. 2003 Jun 1;92(6):1234-41.
59. Le Bourlais C, Acar L, Zia H, Sado PA, Needham T, Leverge R. Ophthalmic drug delivery systems—recent advances. Progress in retinal and eye research. 1998 Jan 1;17(1):33-58.
60. Jacob S, Nair AB, Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomaterials research. 2020 Dec;24:1-6.
61. Gorantla S, Rapalli VK, Waghule T, Singh PP, Dubey SK, Saha RN, Singhvi G. Nanocarriers for ocular drug delivery: Current status and translational opportunity. RSC advances. 2020;10(46):27835-55.
62. Boddeda B, Boddu P, Avasarala H, R Jayanti V. Design and ocular tolerance of flurbiprofen loaded nanosuspension. Pharmaceutical nanotechnology. 2015 Mar 1;3(1):56-67.
63. Shi S, Zhang Z, Luo Z, Yu J, Liang R, Li X, Chen H. Chitosan grafted methoxy poly (ethylene glycol)-poly (ε-caprolactone) nanosuspension for ocular delivery of hydrophobic diclofenac. Scientific reports. 2015 Jun 12;5(1):11337.
64. Onugwu AL, Nwagwu CS, Onugwu OS, Echezona AC, Agbo CP, Ihim SA, Emeh P, Nnamani PO, Attama AA, Khutoryanskiy VV. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. Journal of Controlled Release. 2023 Feb 1;354:465-88.
65. Gote V, Sikder S, Sicotte J, Pal D. Ocular drug delivery: present innovations and future challenges. Journal of Pharmacology and Experimental Therapeutics. 2019 Sep 1;370(3):602-24.
66. A.D. Vadlapudi, K. CholKAr, S.R. Dasari, A.K. Mitra, Ocular Drug Delivery, in: Drug Deliv, Jones & Bartlett Learning, Burlington, MA, USA, 2015, pp. 219–263.
67. Trivedi R, Kompella UB. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine. 2010 Apr;5(3):485-505.
68. Terreni E, Zucchetti E, Tampucci S, Burgalassi S, Monti D, Chetoni P. Combination of nanomicellar technology and in situ gelling polymer as ocular drug delivery system (ODDS) for cyclosporine-A. Pharmaceutics. 2021 Feb 1;13(2):192.
69. Spataro G, Malecaze F, Turrin CO, Soler V, Duhayon C, Elena PP, Majoral JP, Caminade AM. Designing dendrimers for ocular drug delivery. European journal of medicinal chemistry. 2010 Jan 1;45(1):326-34.
70. Rastogi V, Yadav P, Porwal M, Sur S, Verma A. Dendrimer as nanocarrier for drug delivery and drug targeting therapeutics: a fundamental to advanced systematic review. International Journal of Polymeric Materials and Polymeric Biomaterials. 2022 Dec 24:1-23.
71. Lancina III MG, Singh S, Kompella UB, Husain S, Yang H. Fast dissolving dendrimer nanofiber mats as alternative to eye drops for more efficient antiglaucoma drug delivery. ACS biomaterials science & engineering. 2017 Aug 14;3(8):1861-8.
72. Lancina III MG, Wang J, Williamson GS, Yang H. DenTimol as a dendrimeric timolol analogue for glaucoma therapy: synthesis and preliminary efficacy and safety assessment. Molecular pharmaceutics. 2018 May 16;15(7):2883-9.
73. Gupta H, Aqil M. Contact lenses in ocular therapeutics. Drug discovery today. 2012 May 1;17(9-10):522-7.
74. Kim J, Chauhan A. Dexamethasone transport and ocular delivery from poly (hydroxyethyl methacrylate) gels. International journal of pharmaceutics. 2008 Apr 2;353(1-2):205-22.
75. Gulsen D, Li CC, Chauhan A. Dispersion of DMPC liposomes in contact lenses for ophthalmic drug delivery. Current eye research. 2005 Jan 1;30(12):1071-80.
76. Gulsen D, Chauhan A. Dispersion of microemulsion drops in HEMA hydrogel: a potential ophthalmic drug delivery vehicle. International journal of pharmaceutics. 2005 Mar 23;292(1-2):95-117.
77. Fernandes AR, Sanchez-Lopez E, Santos TD, Garcia ML, Silva AM, Souto EB. Development and characterization of nanoemulsions for ophthalmic applications: Role of cationic surfactants. Materials. 2021 Dec 8;14(24):7541.
78. Morsi N, Ibrahim M, Refai H, El Sorogy H. Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide. European journal of pharmaceutical sciences. 2017 Jun 15;104:302-14.
79. Al FY, Al AM, Dhahir RK, Al-Nima AM. Nanoemulsions as Ophthalmic Drug Delivery Systems.
80. Parveen R, Baboota S, Ali J, Ahuja A, Ahmad S. Stability studies of silymarin nanoemulsion containing Tween 80 as a surfactant. Journal of pharmacy & bioallied sciences. 2015 Oct;7(4):321.
81. Ahmed S, Kassem MA, Sayed S. Co-polymer mixed micelles enhanced transdermal transport of Lornoxicam: in vitro characterization, and in vivo assessment of anti-inflammatory effect and antinociceptive activity. Journal of Drug Delivery Science and Technology. 2021 Apr 1;62:102365.
82. Younes NF, Abdel-Halim SA, Elassasy AI. Corneal targeted Sertaconazole nitrate loaded cubosomes: preparation, statistical optimization, in vitro characterization, ex vivo permeation and in vivo studies. International journal of pharmaceutics. 2018 Dec 20;553(1-2):386-97.
83. Tamilvanan S, Benita S. The potential of lipid emulsion for ocular delivery of lipophilic drugs. European Journal of Pharmaceutics and Biopharmaceutics. 2004 Sep 1;58(2):357-68.
84. Georgiev GA, Yokoi N, Nencheva Y, Peev N, Daull P. Surface chemistry interactions of cationorm with films by human meibum and tear film compounds. International journal of molecular sciences. 2017 Jul 18;18(7):1558.
85. López-Alemany A, Montés-Micó R, Garcia-Valldecabres M. Ocular physiology and artificial tears. Journal of the American Optometric Association. 1999 Jul 1;70(7):455-60.
86. Shen S, Wu Y, Liu Y, Wu D. High drug-loading nanomedicines: progress, current status, and prospects. International journal of nanomedicine. 2017;12:4085.
87. Dukovski BJ, Juretić M, Bračko D, Randjelović D, Savić S, Moral MC, Diebold Y, Filipović-Grčić J, Pepić I, Lovrić J. Functional ibuprofen-loaded cationic nanoemulsion: Development and optimization for dry eye disease treatment. International Journal of Pharmaceutics. 2020 Feb 25;576:118979.
88. Liu DX, Zhao XT, Liang W, Li JW. The stability and breakage of oil-in-water from polymer flooding produced water. Petroleum science and technology. 2013 Oct 18;31(20):2082-8.
89. Patel N, Nakrani H, Raval M, Sheth N. Development of loteprednol etabonate-loaded cationic nanoemulsified in-situ ophthalmic gel for sustained delivery and enhanced ocular bioavailability. Drug delivery. 2016 Nov 21;23(9):3712-23.
90. Ahmed S, Kassem MA, Sayed S. Bilosomes as Promising Nanovesicular Carriers for Improved Transdermal Delivery: Construction, in vitro Optimization, ex vivo Permeation and in vivo Evaluation. Int J Nanomedicine. 2020 Dec 8;15:9783-9798. doi: 10.2147/IJN.S278688. PMID: 33324052; PMCID: PMC7733410.
91. Kumar S, Karki R, Meena M, Prakash T, Rajeswari T, Goli D. Reduction in drop size of ophthalmic topical drop preparations and the impact of treatment. Journal of Advanced Pharmaceutical Technology & Research. 2011 Jul;2(3):192.
92. Lederer CM, Harold RE. Drop size of commercial glaucoma medications. American journal of ophthalmology. 1986 Jun 1;101(6):691-4.
93. Stahl U, Willcox M, Stapleton F. Osmolality and tear film dynamics. Clinical and Experimental Optometry. 2012 Jan 1;95(1):3-11.
94. Yamaguchi M, Ueda K, Isowaki A, Ohtori A, Takeuchi H, Ohguro N, Tojo K. Mucoadhesive properties of chitosan-coated ophthalmic lipid emulsion containing indomethacin in tear fluid. Biological and Pharmaceutical Bulletin. 2009 Jul 1;32(7):1266-71.
95. Akhter S, Anwar M, Siddiqui MA, Ahmad I, Ahmad J, Ahmad MZ, Bhatnagar A, Ahmad FJ. Improving the topical ocular pharmacokinetics of an immunosuppressant agent with mucoadhesive nanoemulsions: Formulation development, in-vitro and in-vivo studies. Colloids and Surfaces B: Biointerfaces. 2016 Dec 1;148:19-29.
96. Gonzalez-Mira E, Egea MA, Garcia ML, Souto EB. Design and ocular tolerance of flurbiprofen loaded ultrasound-engineered NLC. Colloids and Surfaces B: Biointerfaces. 2010 Dec 1;81(2):412-21.
97. Kolle SN, Kandárová H, Wareing B, van Ravenzwaay B, Landsiedel R. In-house validation of the EpiOcular™ eye irritation test and its combination with the bovine corneal opacity and permeability test for the assessment of ocular irritation. Alternatives to Laboratory Animals. 2011 Sep;39(4):365-87.
98. Reichl S. Cell culture models of the human cornea—a comparative evaluation of their usefulness to determine ocular drug absorption in-vitro. Journal of Pharmacy and Pharmacology. 2008 Mar;60(3):299-307.
99. Reichl S, Bednarz J, Müller-Goymann CC. Human corneal equivalent as cell culture model for in vitro drug permeation studies. British journal of ophthalmology. 2004 Apr 1;88(4):560-5.
100. Mohanty B, Mishra SK, Majumdar DK. Effect of formulation factors on in vitro transcorneal permeation of voriconazole from aqueous drops. Journal of Advanced Pharmaceutical Technology & Research. 2013 Oct;4(4):210.
101. Fuchsjäger-Mayrl G, Zehetmayer M, Plass H, Turnheim K. Alkalinization increases penetration of lidocaine across the human cornea. Journal of Cataract & Refractive Surgery. 2002 Apr 1;28(4):692-6.
102. Gokce EH, Sandri G, Bonferoni MC, Rossi S, Ferrari F, Güneri T, Caramella C. Cyclosporine A loaded SLNs: evaluation of cellular uptake and corneal cytotoxicity. International journal of pharmaceutics. 2008 Nov 19;364(1):76-86.
103. Ahmed I, Gokhale RD, Shah MV, Patton TF. Physicochemical determinants of drug diffusion across the conjunctiva, sclera, and cornea. Journal of pharmaceutical sciences. 1987 Aug;76(8):583-6.
104. Aburahma MH, Mahmoud AA. Biodegradable ocular inserts for sustained delivery of brimonidine tartarate: preparation and in vitro/in vivo evaluation. Aaps Pharmscitech. 2011 Dec;12:1335-47