ADVANCEMENTS IN DRUG DELIVERY FOR CHRONIC INFLAMMATORY DISEASES: RECENT APPROACHES AND STRATEGIES

Main Article Content

Arushi Saloki
Taranjeet Kukreja
Swarnlata Saraf

Keywords

Chronic inflammation, Inflammatory disease, Drug delivery system, Anti-inflammatory drugs, Phytochemicals

Abstract

The inflammatory process constitutes one of the organism's most fundamental and obvious defense mechanisms. Inflammation is a physiological response of the immunity caused by pathogens, toxic compounds, and damaged cells capable of causing chronic and acute inflammation. This may cause tissue damage or disease. Several therapies are currently available to reduce symptoms and prevent disease progression. However, more efficient treatments are required due to the severe side effects of current therapies, particularly when used long-term. With several nano-formulations, the delivery of drug systems has proven clinically important. In the present paper, we have reviewed chronic inflammatory diseases based on their inflammatory response mechanism. Also focused on recent approaches and targets for treating rheumatoid arthritis is one example of a chronic inflammatory condition. Moreover, for the intervention of inflammation, the current scenario of nano-formulated anti-inflammatory agents from conventional drugs and phytochemical drugs is described in the paper.

Abstract 179 | pdf Downloads 81

References

1. De Barcelos IP, Troxell RM, Graves JS. Mitochondrial Dysfunction and Multiple Sclerosis. Biology (Basel) [Internet]. 2019 Jun 1 [cited 2022 Aug 12];8(2). Available from: /pmc/articles/PMC6627385/
2. Tsai DH, Riediker M, Berchet A, Paccaud F, Waeber G, Vollenweider P, et al. Effects of short- and long-term exposures to particulate matter on inflammatory marker levels in the general population. Environ Sci Pollut Res Int [Internet]. 2019 Jul 1 [cited 2022 Aug 12];26(19):19697–704. Available from: https://pubmed.ncbi.nlm.nih.gov/31079306/
3. Deepak P, Axelrad JE, Ananthakrishnan AN. The Role of the Radiologist in Determining Disease Severity in Inflammatory Bowel Diseases. Gastrointest Endosc Clin N Am [Internet]. 2019 Jul 1 [cited 2022 Aug 12];29(3):447–70. Available from:
https://pubmed.ncbi.nlm.nih.gov/31078247/
4. Singh S, Singh TG, Mahajan K, Dhiman S. Medicinal plants used against various inflammatory biomarkers for the management of rheumatoid arthritis. J Pharm Pharmacol. 2020 Oct 1;72(10):1306–27.
5. Chovatiya R, Medzhitov R. Stress, Inflammation, and Defense of Homeostasis. Mol Cell [Internet]. 2014 Apr 4 [cited 2022 Aug 12];54(2):281. Available from:
/pmc/articles/PMC4048989/
6. Hotamisligil GS. Endoplasmic Reticulum Stress and the Inflammatory Basis of Metabolic Disease. Cell [Internet]. 2010 Mar 3 [cited 2022 Aug 12];140(6):900. Available from: /pmc/articles/PMC2887297/
7. Cicchitti L, Martelli M, Cerritelli F. Chronic Inflammatory Disease and Osteopathy: A Systematic Review. PLoS One [Internet]. 2015 Mar 17 [cited 2022 Aug 12];10(3):e0121327. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0121327
8. Banerjee A, Qi J, Gogoi R, Wong J, Mitragotri S. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J Control release Off J Control Release Soc. 2016 Sep;238:176–85.
9. Jindal AB. The effect of particle shape on cellular interaction and drug delivery applications of micro- and nanoparticles. Int J Pharm. 2017 Oct;532(1):450–65.
10. Jo DH, Kim JH, Lee TG, Kim JH. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine. 2015 Oct;11(7):1603–11.
11. Agrahari V, Burnouf P-A, Burnouf T, Agrahari V. Nanoformulation properties, characterization, and behavior in complex biological matrices: Challenges and opportunities for brain-targeted drug delivery applications and enhanced translational potential. Adv Drug Deliv Rev [Internet]. 2019;148:146–80. Available from:
https://www.sciencedirect.com/science/article/pii/S0169409X19300249
12. Duncan GA, Bevan MA. Computational design of nanoparticle drug delivery systems for selective targeting. Nanoscale [Internet]. 2015 Sep 21 [cited 2022 Jun 30];7(37):15332–40. Available from: https://pubs.rsc.org/en/content/articlehtml/2015/nr/c5nr03691g
13. Li H, Zhang X, Zhang X, Wang K, Liu H, Wei Y. Facile Preparation of Biocompatible and Robust Fluorescent Polymeric Nanoparticles via PEGylation and Cross-Linking. ACS Appl Mater Interfaces [Internet]. 2015 Feb 25;7(7):4241–6. Available from:
https://doi.org/10.1021/am5085308
14. Santos-Martinez MJ, Rahme K, Corbalan JJ, Faulkner C, Holmes JD, Tajber L, et al. Pegylation increases platelet biocompatibility of gold nanoparticles. J Biomed Nanotechnol [Internet]. 2014 [cited 2022 Jun 30];10(6):1004–15. Available from:
https://pubmed.ncbi.nlm.nih.gov/24749395/
15. Dacoba TG, Olivera A, Torres D, Crecente-Campo J, Alonso MJ. Modulating the immune system through nanotechnology. Semin Immunol. 2017 Dec;34:78–102.
16. Brusini R, Varna M, Couvreur P. Advanced nanomedicines for the treatment of inflammatory diseases. Adv Drug Deliv Rev [Internet]. 2020;157:161–78. Available from: https://doi.org/10.1016/j.addr.2020.07.010
17. Tabas I, Glass CK. Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science. 2013 Jan;339(6116):166–72.
18. Molinaro R, Corbo C, Livingston M, Evangelopoulos M, Parodi A, Boada C, et al. Inflammation and Cancer: In Medio Stat Nano. Curr Med Chem. 2018;25(34):4208–23.
19. Salvioni L, Rizzuto MA, Bertolini JA, Pandolfi L, Colombo M, Prosperi D. Thirty Years of Cancer Nanomedicine: Success, Frustration, and Hope. Cancers (Basel). 2019 Nov;11(12).
20. Irvine DJ, Dane EL. Enhancing cancer immunotherapy with nanomedicine. Nat Rev Immunol. 2020 May;20(5):321–34.
21. Crofford LJ. Use of NSAIDs in treating patients with arthritis. Arthritis Res Ther [Internet]. 2013 Jul 24 [cited 2022 Aug 26];15(SUPPL 3):1–10. Available from: https://arthritis-research.biomedcentral.com/articles/10.1186/ar4174
22. Strehl C, van der Goes MC, Bijlsma JWJ, Jacobs JWG, Buttgereit F. Glucocorticoid-targeted therapies for the treatment of rheumatoid arthritis. Expert Opin Investig Drugs. 2017 Feb;26(2):187–95.
23. Brown PM, Pratt AG, Isaacs JD. Mechanism of action of methotrexate in rheumatoid arthritis, and the search for biomarkers. Nat Rev Rheumatol. 2016 Dec;12(12):731–42.
24. Rein P, Mueller RB. Treatment with Biologicals in Rheumatoid Arthritis: An Overview. Rheumatol Ther. 2017 Dec;4(2):247–61.
25. Schumacher M, Juncker T, Schnekenburger M, Gaascht F, Diederich M. Natural compounds as inflammation inhibitors. Genes Nutr. 2011 May;6(2):89–92.
26. Barnes PJ. Glucocorticoids. In: Chemical Immunology and Allergy [Internet]. 2014. p. 311–6. Available from: https://www.karger.com/DOI/10.1159/000359984
27. Oppong E, Cato ACB. Effects of Glucocorticoids in the Immune System. Adv Exp Med Biol. 2015;872:217–33.
28. Ali H, Collnot EM, Windbergs M, Lehr C. Nanomedicines for the treatment of inflammatory bowel diseases. In 2013.
29. Oray M, Abu Samra K, Ebrahimiadib N, Meese H, Foster CS. Long-term side effects of glucocorticoids. Expert Opin Drug Saf. 2016;15(4):457–65.
30. Youshia J, Lamprecht A. Size-dependent nanoparticulate drug delivery in inflammatory bowel diseases. Expert Opin Drug Deliv. 2016;13(2):281–94.
31. Kshirsagar SJ, Bhalekar MR, Patel JN, Mohapatra SK, Shewale NS. Preparation and characterization of nanocapsules for colon-targeted drug delivery system. Pharm Dev Technol. 2012;17(5):607–13.
32. Kraan MC, Versendaal H, Jonker M, Bresnihan B, Post WJ, t Hart BA, et al. Asymptomatic synovitis precedes clinically manifest arthritis. Arthritis Rheum. 1998 Aug;41(8):1481–8.
33. Wongrakpanich S, Wongrakpanich A, Melhado K, Rangaswami J. A Comprehensive Review of Non-Steroidal Anti-Inflammatory Drug Use in The Elderly. Aging Dis. 2018 Feb;9(1):143–50.
34. Sostres C, Gargallo CJ, Arroyo MT, Lanas A. Adverse effects of non-steroidal anti-inflammatory drugs (NSAIDs, aspirin and coxibs) on upper gastrointestinal tract. Best Pract Res Clin Gastroenterol. 2010 Apr;24(2):121–32.
35. Gonçalves RM, Pereira ACL, Pereira IO, Oliveira MJ, Barbosa MA. Macrophage response to chitosan/poly-(γ-glutamic acid) nanoparticles carrying an anti-inflammatory drug. J Mater Sci Mater Med. 2015;26(4):1–12.
36. Alaaeldin E, Abou-Taleb HA, Mohamad SA, Elrehany M, Gaber SS, Mansour HF. Topical nano-vesicular spanlastics of celecoxib: Enhanced anti-inflammatory effect and down-regulation of tnf-α, nf-кb and cox-2 in complete freund’s adjuvant-induced arthritis model in rats. Int J Nanomedicine. 2021;16:133–45.
37. Ip WKE, Hoshi N, Shouval DS, Snapper S, Medzhitov R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 2017 May;356(6337):513–9.
38. Viscido A, Capannolo A, Latella G, Caprilli R, Frieri G. Nanotechnology in the treatment of inflammatory bowel diseases. J Crohns Colitis. 2014 Sep;8(9):903–18.
39. Gupta S, Sharma AK, Shastri V, Madhu MK, Sharma VK. Prediction of anti-inflammatory proteins/peptides: an insilico approach. J Transl Med [Internet]. 2017;15(1):7. Available from: https://doi.org/10.1186/s12967-016-1103-6
40. Bartlett RL 2nd, Sharma S, Panitch A. Cell-penetrating peptides released from thermosensitive nanoparticles suppress pro-inflammatory cytokine response by specifically targeting inflamed cartilage explants. Nanomedicine. 2013 Apr;9(3):419–27.
41. Poh S, Lin JB, Panitch A. Release of anti-inflammatory peptides from thermosensitive nanoparticles with degradable cross-links suppresses pro-inflammatory cytokine production. Biomacromolecules. 2015 Apr;16(4):1191–200.
42. He C, Yin L, Song Y, Tang C, Yin C. Optimization of multifunctional chitosan-siRNA nanoparticles for oral delivery applications, targeting TNF-α silencing in rats. Acta Biomater. 2015 Apr;17:98–106.
43. Horckmans M, Ring L, Duchene J, Santovito D, Schloss MJ, Drechsler M, et al. Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur Heart J. 2017 Jan;38(3):187–97.
44. Song P, Yang C, Thomsen JS, Dagnæs-Hansen F, Jakobsen M, Brüel A, et al. Lipidoid-siRNA Nanoparticle-Mediated IL-1β Gene Silencing for Systemic Arthritis Therapy in a Mouse Model. Mol Ther. 2019 Aug;27(8):1424–35.
45. Duan W, Li H. Combination of NF-kB targeted siRNA and methotrexate in a hybrid nanocarrier towards the effective treatment in rheumatoid arthritis. J Nanobiotechnology. 2018 Jul;16(1):58.
46. Verma N, Saraf S. Development and optimization of mannosylated naringenin loaded transfersomes using response surface methodology for skin carcinoma. Int J Appl Pharm. 2021;13(2):235–41.
47. Sultana F, Neog MK, Rasool MK. Withaferin-A, a steroidal lactone encapsulated mannose decorated liposomes ameliorates rheumatoid arthritis by intriguing the macrophage repolarization in adjuvant-induced arthritic rats. Colloids Surfaces B Biointerfaces [Internet]. 2017;155:349–65. Available from: http://dx.doi.org/10.1016/j.colsurfb.2017.04.046
48. Bongartz T, Sutton AJ, Sweeting MJ, Buchan I, Matteson EL, Montori V. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA. 2006 May;295(19):2275–85.
49. Ni R, Song G, Fu X, Song R, Li L, Pu W, et al. Reactive oxygen species-responsive dexamethasone-loaded nanoparticles for targeted treatment of rheumatoid arthritis via suppressing the iRhom2/TNF-α/BAFF signaling pathway. Biomaterials. 2020 Feb;232:119730.
50. Seetharaman G, Kallar AR, Vijayan VM, Muthu J, Selvam S. Design, preparation and characterization of pH-responsive prodrug micelles with hydrolyzable anhydride linkages for controlled drug delivery. J Colloid Interface Sci. 2017 Apr 15;492:61–72.
51. Joshi N, Yan J, Levy S, Bhagchandani S, Slaughter K V., Sherman NE, et al. Towards an arthritis flare-responsive drug delivery system. Nat Commun [Internet]. 2018;9(1):1–11. Available from: http://dx.doi.org/10.1038/s41467-018-03691-1
52. Pujol-Autonell I, Mansilla M-J, Rodriguez-Fernandez S, Cano-Sarabia M, Navarro-Barriuso J, Ampudia R-M, et al. Liposome-based immunotherapy against autoimmune diseases: therapeutic effect on multiple sclerosis. Nanomedicine (Lond). 2017 Jun;12(11):1231–42.
53. Capini C, Jaturanpinyo M, Chang H-I, Mutalik S, McNally A, Street S, et al. Antigen-specific suppression of inflammatory arthritis using liposomes. J Immunol. 2009 Mar;182(6):3556–65.
54. Khan D, Qindeel M, Ahmed N, Khan AU, Khan S, Rehman AU. Development of novel pH-sensitive nanoparticle-based transdermal patch for management of rheumatoid arthritis. Nanomedicine (Lond). 2020 Mar;15(6):603–24.
55. Mohammadi M, Li Y, Abebe DG, Xie Y, Kandil R, Kraus T, et al. Folate receptor targeted three-layered micelles and hydrogels for gene delivery to activated macrophages. J Control release Off J Control Release Soc. 2016 Dec;244(Pt B):269–79.
56. Lee H, Lee M-Y, Bhang SH, Kim B-S, Kim YS, Ju JH, et al. Hyaluronate-gold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis. ACS Nano. 2014 May;8(5):4790–8.