INFLUENCE OF CASSIA AURICULATA LEAVES ON PLASMA ANTIOXIDANTS IN STREPTOZOTOCIN- NICOTINAMIDE INDUCED EXPERIMENTAL DIABETES

Main Article Content

Murugan P
Sakthivel V

Keywords

Cassia auriculata, plasma lipid peroxidation, plasma antioxidants, diabetes mellitus

Abstract

Cassia auriculata is an evergreen shrub that grows in many parts of India and in other parts of Asia. The flower, leaves, stem, root, and unripe fruit are used for treatment, especially in Ayurvedic medicine. People use Cassia auriculata for diabetes, eye infections (conjunctivitis), joint and muscle pain (rheumatism), constipation, jaundice, liver disease, and urinary tract disorders. Oral administration of Cassia auriculta leaf extract (CLEt) of diabetic rats for 45 days resulted in significant reduction in blood glucose and significant increase in plasma insulin levels. A single dose of streptozotocin (65 mg/kg body weight) produced decrease in insulin, hyperglycemia, increased lipid peroxidation (thiobarbituric reactive substances [TBARS] and lipid hydroperoxides) and decreased antioxidant levels (vitamin C, vitamin E, reduced glutathione, ceruloplasmin). Oral administration of CLEt (0.45 g/kg body weight) and for 45 days to diabetic rats significantly increased the plasma insulin and plasma antioxidants and significantly decreased the lipid peroxidation. The effect of CLEt was better when compared with glibenclamide.

Abstract 67 | pdf Downloads 43

References

1. Alho H, Leinonen JS. Total antioxidant activity measured by chemiluminescence methods. Methods Enzymol.1998; 299:3–15.
2. Aragno M, Brignardello E, Tamagno E, Gatto V, Danni O, Boccuzzi G. Dehydroepiandrosterone administration prevents the oxidative damage induced by acute hyperglycemia in rats. J Endocrinol 1997; 155: 233-240.
3. Baker H, Frank O, Angelis B, Feingold S. Plasma tocopherol in man at various times after ingesting free or acetylated tocopherol. Nutritional Report Investication 1951; 21: 531 – 536.
4. Biessels GJ, Kappelle AC, Bravenboer B, Erkelens DW, Gispen WH. Cerebral function in diabetes mellitus. Diabetologia 1994; 37: 643-651.
5. Dias AS, Porawski M, Alonso M, Marroni N, Collado PS, Gonzalez-Gallego J. Quercetin decreases oxidative stress, NF-kappaB activation, and iNOS overexpression in liver of streptozotocin-induced diabetic rats. J Nutr 2005;135:2299-2304.
6. Donnini D, Zambito AM, Perella G. Glucose may induce cell death through a free radical-mediated mechanism. Biochem Biophy Res Commun 1996; 219: 412-417.
7. Dormandy TL. Free-radical reaction in biological systems. Ann R Coll Surg Engl 1980;62:188-194.
8. Duncan BD. Multiple ranges tests for correlated and heteroscedastic means. Biometrics 1957; 13: 359-364.
9. Ellman GC. Tissue sulfhydryl groups. Arch Biochem Biophys 1959; 82: 70–77.
10. Feillet-Coudray C, Rock E, Coudray C, Grzelkowska K, Azais-Braesco V, Dardevet D, Mazur A. Lipid peroxidation and antioxidant status in experimental diabetes. Clin Chim Acta 1999; 284: 31-43.
11. Fraga, CG, Leibouitz BE, Toppel AL. Lipid peroxidation measured as TBARS in tissue slices: characterization and comparison with homogenates and microsomes. Free Radic Biol Med 1988; 4: 155–161.
12. Frei B, England L, Ames BN. Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci, USA. 1986;86:6377–6381.
13. Garg MC, Bansal DD. Protective antioxidant effect of vitamin C and vitamin E in streptozotocin induced diabetic rats. Indian J Exp Biol 2000; 38: 101-104.
14. Halliwell B, Gutteridge JMC. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 1990;186:1-85.
15. Inefers H, Sies H. The production by ascorbate and glutathione against microsomal lipid peroxidation is dependent on vitamin E. Eur J Biochem 1988;174:353-357.
16. Inefers H, Sies H. The production by ascorbate and glutathione against microsomal lipid peroxidation is dependent on vitamin E. Eur J Biochem 1988;174:353-357.
17. Jain, S.R Preventive effects of Cassia auriculata L. flowers on brain lipid peroxidation in rats treated with streptozotocin. Planta. Medica., 1: 43-47. (1968).
18. Jiang ZY, Hunt JV, Wolff SD. Ferrous sulphate oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low-density lipoprotein. Anal Biochem 1992; 202: 384–389.
19. John, A., Lott Turner, K. Evaluation of trinder’s glucose oxidase method for measuring glucose in serum and urine. Clinical chemistry. 1975 21/12, 1754-1760.
20. Kumuhekar HM, Katyane SS. Altered kinetic attributes of Na+- K+ ATPase acivity in kidney, brain and erythrocyte membrane in alloxan diabetic rats. Ind J Exp Biol 1992; 30: 26–32.
21. Latha M, Pari L, Sitasawad S, Bhonde R. Scoparia dulcis, a traditional antidiabetic plant, protects against streptozotocin induced oxidative stress and apoptosis in vitro and in vivo. J Biochem Mol Toxicol 2004;18:261-272.
22. Lowry OH, Roesborough MJ, Farr AL, Randall RJ. Protein measurement with Folin-Phenol reagent. J Biol Chem 1951; 193: 265-75.
23. McCall AL. The impact of diabetes on the CNS. Diabetes 1992; 41: 557-570.
24. McLennan S, Yue DK, Fisher E, Capogreco C, Heffernan S, Ross GR, Turtle JR. Deficiency of ascorbic acid in experimental diabetes. Relationship with collagen and polyol pathway abnormalities. Diabetes 1988;37:359-361.
25. Meena V, Baruah H, and Parveen R. (2019). Cassia auriculata: A healing herb for all remedy. J Pharmacogn Phytochem 8, 4093–4097.
26. Meister A. New aspects of glutathione biochemistry and transport--selective alteration of glutathione metabolism. Nutr Rev 1984; 42:397-410.
27. Mohamed AK, Bierhaus A, Schiekofer S. The role of oxidative stress and NF(B) activation in late diabetic complications. Biological Factors 1999; 10: 175-179.
28. Murugan P, Pari L. Antioxidant effect of tetrahydrocurcumin in streptozotocin - nicotinamide induced diabetic rats. Life sciences. 2006; 79: 1720-1728.
29. Murugan P, Pari L. Effect of tetrahydrocurcumin on plasma antioxidants in streptozotocin- nicotinamide induced experimental diabetes. Journal of Basic & Clinical Physiology & Pharmacology. 2006b; 17: 231-244.
30. Murugan P. Preventive effects of Cassia auriculata on brain lipid peroxidation streptozotocin diabetic rats. International Journal of Information Research and Review: 2015a ;Vol. 02, Issue, 05, pp.6924-6929.
31. Murugan P. Preventive effects of Cassia auriculata on brain lipid peroxidation streptozotocin diabetic rats. International Journal of Information Research and Review : 2015b ; Vol. 02, Issue, 05, pp.6924-6929.
32. Murugan P. Taner’s Cassia (Cassia auriculata L) extract prevents hemoglobin glycation tail tendon collagen properties in experimental diabetic rats. Journal of cell and tissue research. 2010; 10 (1): 2109-2114.
33. Murugan P. Effect of Cassia auriculata l on erythrocyte membrane bound enzymes andantioxidant status in experimental diabetes. International Journal of Recent Advances in Multidisciplinary Research. 2015c; Vol. 02, Issue 12, pp.5760-5764.
34. Nicotera P, Orrenius S. Role of thiols in protection against biological reactive intermediates. Adv Exp Med Biol 1986;197:41-51.
35. Omaye ST, Turbull TD, Sauberlich HC. Selected method for the determination of ascorbic acid in animal cells, tissues and fluids. McCormic DB, Wright DL (eds.) methods. Enzymol Academic Press, New York 1979; 62: 3 – 11.
36. Pari L, Amarnath Satheesh M, “Effect of pterostilbene on hepatic key enzymes of glucose metabolism in streptozotocin- and nicotinamide-induced diabetic rats” Life Sciences. 79, Page 641–645, 2006.
37. Pari L, Murugan P. Influence of Cassia auriculata flowers on Insulin Receptors in Streptozotocin Induced Diabetic Rats: Studies on Insulin Binding to Erythrocytes. African Journal of Biochemistry Research. 2007; 1 (7): 148-155.
38. Picton SF, Flatt PR, Mcclenghan NH. Differntial acute and long term actions of succinic acid monomethyl ester exposure on insulin secreting BRAIN- BD 11 cells. Inter J Exper Diab Res 2001; 2: 19-27.
39. Ravin HA. An improved colorimetric enzymatic assay of ceruloplasmin. J Lab Clin Med 1961; 58: 161-168.
40. Rice-Evans C, Miller NJ. Total antioxidant status in plasma and body fluids. Methods Enzymol.1994; 234:279–293.
41. Scholz RW, Reddy PV, Wynn MK, Graham KS, Liken AD, Gumpricht E, Reddy CC. Glutathione-dependent factors and inhibition of rat liver microsomal lipid peroxidation. Free Radic Biol Med 1997;23: 815-828.
42. Shrotri DS, Aiman R. (1960). The relationship of the post-absorptive state to the hypoglyceamic action. Ind J Med Res. 48: 162 – 168, 1960.
43. Vatassery GT, Morely JW, Kwskwski MA. Vitamin E in plasma and platelets of human diabetic patients and control subjects. Am J Clin Nutr 1983;37:641-644.
44. Vucic M, Gavella M, Bozikov V, Ashcroft SJH, Rocic B. Superoxide dismutase activity in lymphocytes and polymorphonuclear cells of diabetic patients. Eur J Clin Chem Clin Biochem 1997; 35: 517-521.
45. Wayner DD, Burton GW, Ingold KU, Locke SJ. Quantitative measurement of the total, peroxyl radical-trapping antioxidant capability of human blood plasma by controlled peroxidation: the important contribution made by plasma proteins. FEBS Lett.1985; 187:33–37.
46. Zhang P, Omaye ST. beta-Carotene: interactions with alpha-tocopherol and ascorbic acid in microsomal lipid peroxidation. J Nutr Biochem 2001;12:38-45.