EXPLORING NATURAL SUGAR SUBSTITUTES: CAN THEY BE A FRIENDLY DIET FOR TYPE 2 DIABETES MELLITUS? WEIGHING THE PROS AND CONS

Main Article Content

Putriana Rachmawati
Lusy Noviani

Keywords

natural sweetener, sugar substitution, type 2 diabetes mellitus

Abstract

Type 2 Diabetes Mellitus (T2DM) is a metabolic disease when the body did not have insulin in sufficient amounts or lack of sensitivity. This condition impacts an increase in glucose concentration. The treatment is focused on lifestyle changes including a healthy diet. One healthy diet option is to substitute sweeteners sourced from glucose with another sweetener that has a lower impact on blood sugar concentration. Substitution of sugar as a sweetener to claim “healthier” than sucrose can be seen in some parameters such as glycaemic index, structure, and sweetness relative that impact glucose response.  National and international journals were used as a literature review for primary data sources. Diabetes mellitus type 2 and natural sweeteners are inclusion criteria to be reviewed. High sweetness ratio and low glycaemic index help to reduce amounts of sugar added into a diet that impacts low glucose response. The complexity of the sugar impacting speed and percent absorption directly impacts blood sugar concentration. But some sugar substitutes should be considered for adverse impacts like cholesterol, gastrointestinal problem, and flora normal growth.  The selection of sugar substitutes can be based on the glycaemic index, sweetness ratio, and sugar structure. Some substitute sweeteners have potentially adverse effects that should be considered. Replacement of the sugar doesn’t mean patients are free from monitoring of sugar blood concentration and other treatments. But it can be the option to replace sugar as a sweetener in diets that are consumed by the patient.

Abstract 247 | Pdf Downloads 148

References

1. International Diabetes Federation. Diabetes around the world in 2021 [Internet]. IDF Diabetes Atlas. 2022 [cité 13 juill 2023]. Disponible sur: https://diabetesatlas.org/#:~:text=Diabetes%20around%20the%20world%20in%202021%3A,and%20783%20million%20by%202045.
2. Alves‐Bezerra M, Cohen DE. Triglyceride Metabolism in the Liver. In: Comprehensive Physiology. Wiley; 2017. p. 1 22.
3. Center for Disease Control and Prevention. Diabetes Tests [Internet]. Center for Disease Control and Prevention. 2023 [cité 26 juill 2023]. Disponible sur: https://www.cdc.gov/diabetes/basics/getting-tested.html#:~:text=The%20A1C%20test%20measures%20your,higher%20indicates%20you%20have%20diabetes.
4. Balk EM, Earley A, Raman G, Avendano EA, Pittas AG, Remington PL. Combined Diet and Physical Activity Promotion Programs to Prevent Type 2 Diabetes Among Persons at Increased Risk: A Systematic Review for the Community Preventive Services Task Force. Ann Intern Med. 15 sept 2015;163(6):437 51.
5. Gong QH, Kang JF, Ying YY, Li H, Zhang XH, Wu YH, et al. Lifestyle Interventions for Adults with Impaired Glucose Tolerance: A Systematic Review and Meta-Analysis of the Effects on Glycemic Control. Internal Medicine. 2015;54(3):303 10.
6. Schulze MB, Liu S, Rimm EB, Manson JE, Willett WC, Hu FB. Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. Am J Clin Nutr. août 2004;80(2):348 56.
7. Saraiva A, Carrascosa C, Raheem D, Ramos F, Raposo A. Maltitol: Analytical Determination Methods, Applications in the Food Industry, Metabolism and Health Impacts. Int J Environ Res Public Health. 20 juill 2020;17(14):5227.
8. Bantle JP. Dietary Fructose and Metabolic Syndrome and Diabetes. J Nutr. juin 2009;139(6):1263S-1268S.
9. Galmarini MV, Zamora MC, Chirife J. Gustatory reaction time and time intensity measurements of trehalose and sucrose solutions and their mixtures. J Sens Stud. avr 2009;24(2):166 81.
10. Yoshizane C, Mizote A, Yamada M, Arai N, Arai S, Maruta K, et al. Glycemic, insulinemic and incretin responses after oral trehalose ingestion in healthy subjects. Nutr J. 6 déc 2017;16(1):9.
11. O’Donnell K, Kearsley MW. Sweeteners and Sugar Alternatives in Food Technology. O’Donnell K, Kearsley MW, éditeurs. Wiley; 2012.
12. Yoshizane C, Mizote A, Arai C, Arai N, Ogawa R, Endo S, et al. Daily consumption of one teaspoon of trehalose can help maintain glucose homeostasis: a double-blind, randomized controlled trial conducted in healthy volunteers. Nutr J. 9 déc 2020;19(1):68.
13. Arai C, Arai N, Mizote A, Kohno K, Iwaki K, Hanaya T, et al. Trehalose prevents adipocyte hypertrophy and mitigates insulin resistance. Nutrition Research. déc 2010;30(12):840 8.
14. Kozlov A, Vershubskaya G, Gorin I, Petrushenko V, Lavryashina M, Balanovska E. Prevalence of genetically determined trehalase deficiency in populations of Siberia and Russian Far East. Int J Circumpolar Health. 31 déc 2023;82(1).
15. Saraiva A, Carrascosa C, Raheem D, Ramos F, Raposo A. Natural Sweeteners: The Relevance of Food Naturalness for Consumers, Food Security Aspects, Sustainability and Health Impacts. Int J Environ Res Public Health. 28 août 2020;17(17):6285.
16. Guerrero-Wyss M, Durán Agüero S, Angarita Dávila L. D-Tagatose Is a Promising Sweetener to Control Glycaemia: A New Functional Food. Biomed Res Int. 2018;2018:1 7.
17. Police SB, Harris JC, Lodder RA, Cassis LA. Effect of Diets Containing Sucrose vs. D-tagatose in Hypercholesterolemic Mice. Obesity. févr 2009;17(2):269 75.
18. Ensor M, Banfield AB, Smith RR, Williams J, Lodder RA. Safety and Efficacy of D-Tagatose in Glycemic Control in Subjects with Type 2 Diabetes. J Endocrinol Diabetes Obes. 2015;3(1).
19. Rytz A, Adeline D, Lê KA, Tan D, Lamothe L, Roger O, et al. Predicting Glycemic Index and Glycemic Load from Macronutrients to Accelerate Development of Foods and Beverages with Lower Glucose Responses. Nutrients. 25 mai 2019;11(5):1172.
20. Msomi NZ, Erukainure OL, Islam MdS. Suitability of Sugar Alcohols as Antidiabetic Supplements: A Review. J Food Drug Anal. 15 mars 2021;29(1):1 14.
21. Chatsudthipong V, Muanprasat C. Stevioside and related compounds: Therapeutic benefits beyond sweetness. Pharmacol Ther. janv 2009;121(1):41 54.
22. Gerwig GJ, te Poele EM, Dijkhuizen L, Kamerling JP. Stevia Glycosides. In 2016. p. 1 72.
23. Chupeerach C, Yothakulsiri C, Chamchan R, Suttisansanee U, Sranacharoenpong K, Tungtrongchitr A, et al. The Effect of Coconut Jelly with Stevia as a Natural Sweetener on Blood Glucose, Insulin and C-Peptide Responses in Twelve Healthy Subjects. Recent Pat Food Nutr Agric. 22 oct 2018;9(2):127 33.
24. Becker SL, Chiang E, Plantinga A, Carey H V, Suen G, Swoap SJ. Effect of stevia on the gut microbiota and glucose tolerance in a murine model of diet-induced obesity. FEMS Microbiol Ecol. 1 juin 2020;96(6).
25. de la Garza AL, Romero-Delgado B, Martínez-Tamez AM, Cárdenas-Tueme M, Camacho-Zamora BD, Matta-Yee-Chig D, et al. Maternal Sweeteners Intake Modulates Gut Microbiota and Exacerbates Learning and Memory Processes in Adult Male Offspring. Front Pediatr. 7 janv 2022;9.
26. Nettleton JE, Klancic T, Schick A, Choo AC, Shearer J, Borgland SL, et al. Low-Dose Stevia (Rebaudioside A) Consumption Perturbs Gut Microbiota and the Mesolimbic Dopamine Reward System. Nutrients. 31 mai 2019;11(6):1248.
27. Nettleton JE, Cho NA, Klancic T, Nicolucci AC, Shearer J, Borgland SL, et al. Maternal low-dose aspartame and stevia consumption with an obesogenic diet alters metabolism, gut microbiota and mesolimbic reward system in rat dams and their offspring. Gut. oct 2020;69(10):1807 17.
28. Wang QP, Browman D, Herzog H, Neely GG. Non-nutritive sweeteners possess a bacteriostatic effect and alter gut microbiota in mice. PLoS One. 5 juill 2018;13(7):e0199080.
29. Ajami M, Seyfi M, Abdollah Pouri Hosseini F, Naseri P, Velayati A, Mahmoudnia F, et al. Effects of stevia on glycemic and lipid profile of type 2 diabetic patients: A randomized controlled trial. Avicenna J Phytomed. 2020;10(2):118 27.
30. Gregersen S, Jeppesen PB, Holst JJ, Hermansen K. Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metabolism. janv 2004;53(1):73 6.
31. Zeece M. Flavors. In: Introduction to the Chemistry of Food. Elsevier; 2020. p. 213 50.
32. Faruque S, Tong J, Lacmanovic V, Agbonghae C, Minaya D, Czaja K. The Dose Makes the Poison: Sugar and Obesity in the United States – a Review. Pol J Food Nutr Sci. 22 août 2019;69(3):219 33.
33. Peveler R, George C, Kinmonth AL, Campbell M, Thompson C. Effect of antidepressant drug counselling and information leaflets on adherence to drug treatment in primary care: randomised controlled trial. BMJ. 4 sept 1999;319(7210):612 5.
34. Frazer A. Pharmacology of Antidepressants. J Clin Psychopharmacol. avr 1997;17:2S-18S.
35. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol. IARC Monogr Eval Carcinog Risks Hum. 2006;88:1 478.
36. Vega-López S, Venn B, Slavin J. Relevance of the Glycemic Index and Glycemic Load for Body Weight, Diabetes, and Cardiovascular Disease. Nutrients. 22 sept 2018;10(10):1361.
37. Vega-López S, Venn BJ, Slavin JL. Relevance of the Glycemic Index and Glycemic Load for Body Weight, Diabetes, and Cardiovascular Disease. Nutrients. 22 sept 2018;10(10).
38. Deng D, Yan N. GLUT, SGLT, and SWEET: Structural and mechanistic investigations of the glucose transporters. Protein Science. mars 2016;25(3):546 58.
39. Benini S. Carbohydrate-Active Enzymes: Structure, Activity, and Reaction Products. Int J Mol Sci. 15 avr 2020;21(8):2727.